Random walk on a lattice: Basic formulas

Andriy Zhugayevych (http://zhugayevych.me)

May 16, 2024
1 Introduction 1
2 Periodic lattice 2
2.1 Mean linear displacement and velocity 3
2.2 Mean square displacement and diffusion tensor 4
2.3 Diffusion length 4
2.4 One-dimensional example 4
2.5 Primitive lattices 5
3 Symmetric spectral problem 5
3.1 Path expansion 6

Notations

References to procedures from LatticeTools package (https://zhugayevych.me/maple/LatticeTools/) are marked as [procedure_name]. Calculation of velocity and diffusion tensor can be cited as Ref.[Zhugayevych13].

§1. Introduction

By lattice we mean any subset $X \subset \mathbb{Z}^{d}$ immersed in \mathbb{R}^{d}, so that for any point $x \in X$ the vector $\boldsymbol{r}_{x} \in \mathbb{R}^{d}$ is defined. We consider a random walk problem whose sojourn probability $p_{x}(t)$ is governed by the equation

$$
\begin{equation*}
\dot{p}_{x}=-p_{x}\left(\nu_{x}+w_{x}\right)+\sum_{z} p_{z} w_{z x} \tag{1.1}
\end{equation*}
$$

where $w_{z x}$ is the transition rate from z to x and

$$
\begin{equation*}
w_{x}=\sum_{z} w_{x z} \tag{1.2}
\end{equation*}
$$

here and throughout the text a sum without limits means the sum over all possible values of the indicated variable. The transition probability $p_{y x}(t)$ is the solution of Eq. (1.1) with the initial condition $p_{y x}(0)=\delta_{y x}$. The Laplace transform of $p_{y x}(t)$ is the Green's function $G_{y x}(s)$ satisfying the equation

$$
\begin{equation*}
\left(s+\nu_{x}+w_{x}\right) G_{y x}-\delta_{y x}=\sum_{z} G_{y z} w_{z x} \tag{1.3}
\end{equation*}
$$

To find a large-time asymptotics, the Tauberian theorem is useful:

$$
\begin{equation*}
s G_{y x}(s) \sim s^{-\mu} \varphi(1 / s), s \rightarrow+0 \Longleftrightarrow p_{y x}(t) \sim \frac{t^{\mu}}{\Gamma(\mu+1)} \varphi(t), t \rightarrow \infty \tag{1.4}
\end{equation*}
$$

where φ is a slow varying function. In particular,

$$
\begin{equation*}
p_{y x}(\infty)=\lim _{s \rightarrow 0} s G_{y x}(s) \tag{1.5}
\end{equation*}
$$

if the limit exists. Next,

$$
\begin{equation*}
\sum_{x} p_{y x}(t) \boldsymbol{r}_{x} \sim \boldsymbol{v} t+\boldsymbol{a}(t), t \rightarrow \infty \Longleftrightarrow s \sum_{x} G_{y x}(s) \boldsymbol{r}_{x} \sim \boldsymbol{v} / s+\boldsymbol{a}_{y}(1 / s), s \rightarrow+0 \tag{1.6}
\end{equation*}
$$

here \boldsymbol{v} is the stationary velocity and for $\boldsymbol{v}=0$ the vector \boldsymbol{a} gives the mean stationary position (both may depend on y). Finally, if $\boldsymbol{v}=0$ then the positively definite diffusion tensor is defined by

$$
\begin{equation*}
\sum_{x} p_{y x}(t) \boldsymbol{r}_{x} \otimes \boldsymbol{r}_{x} \sim 2 \mathbf{D} t, t \rightarrow \infty \tag{1.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathbf{D}=\lim _{s \rightarrow 0} \frac{s^{2}}{2} \sum_{x} G_{y x}(s) \boldsymbol{r}_{x} \otimes \boldsymbol{r}_{x} \tag{1.8}
\end{equation*}
$$

The diffusion coefficient is $\operatorname{tr} \mathbf{D} / d$. In the ergodic case both \boldsymbol{v} and \mathbf{D} do not depend on y.
The integral

$$
\begin{equation*}
p_{y x}^{\mathrm{abs}}(t)=\nu_{x} \int_{0}^{t} p_{y x}(\tau) \mathrm{d} \tau \tag{1.9}
\end{equation*}
$$

gives the absorption probability at the site x. Using Tauberian theorems

$$
\begin{equation*}
p_{y x}^{\mathrm{abs}}(\infty)=G_{y x}(0) \nu_{x} \tag{1.10}
\end{equation*}
$$

(if the limit exists). If $\mathbf{D}=0$ then the absorption area tensor is defined by

$$
\begin{equation*}
\boldsymbol{\Lambda}_{y}=\frac{1}{2} \sum_{x} p_{y x}^{\mathrm{abs}}(\infty) \boldsymbol{r}_{x} \otimes \boldsymbol{r}_{x} \tag{1.11}
\end{equation*}
$$

The diffusion length is $\sqrt{\left\langle\operatorname{tr} \boldsymbol{\Lambda}_{y}\right\rangle_{y}}$. If ν_{x} does not depend on x then from (1.3) and (1.8) it follows that

$$
\begin{equation*}
\lim _{\nu \rightarrow 0} \nu \boldsymbol{\Lambda}_{y}(\nu)=\mathbf{D}(\nu=0) \tag{1.12}
\end{equation*}
$$

Let the random walk be quasisymmetric, that is

$$
\begin{equation*}
\frac{w_{x y}}{w_{y x}}=\mathrm{e}^{\frac{\varepsilon_{x}-\varepsilon_{y}}{T}} \tag{1.13}
\end{equation*}
$$

with some on-site energies ε and positive temperature T. Then if ε and w are bounded, and the immersion in \mathbb{R}^{d} is regular (the ratio $w_{x y} /\left|\boldsymbol{r}_{x}-\boldsymbol{r}_{y}\right|$ is bounded), it can be shown (show!) that $\boldsymbol{v}=0$. Next, if we substitute $\varepsilon_{x} \rightarrow \varepsilon_{x}-\boldsymbol{r}_{x} \boldsymbol{E}$, then in the limit of vanishing external field \boldsymbol{E} we obtain the Einstein relation (prove!):

$$
\begin{equation*}
\boldsymbol{v} \sim T^{-1} \mathbf{D} \boldsymbol{E} \tag{1.14}
\end{equation*}
$$

§2. Periodic lattice

Let X have a translational invariance so that each point $x \in X$ can be presented as $x=(\xi, \alpha)$, where ξ runs \mathbb{Z}^{d} or a torus $L^{d}\left(L\right.$ means L_{1}, \ldots, L_{d} and $\left.\xi_{i}=\overline{0, L_{i}-1}\right), \alpha$ runs the unit cell, and

$$
\begin{equation*}
\nu_{(\xi, \alpha)}=\nu^{\alpha}, \quad w_{(\eta, \beta)(\xi, \alpha)}=w_{\xi-\eta}^{\beta \alpha} \tag{2.1}
\end{equation*}
$$

The Eq. (1.3) can be simplified by Fourier transformation with respect to the variable ξ, which for a function f_{ξ} is defined as

$$
\hat{f}^{\alpha}(k)=\sum_{\xi} f_{\xi} \mathrm{e}^{\mathrm{i} k \xi}
$$

where $k \xi=\sum_{i=1}^{d} k_{i} \xi_{i}$. The inverse transformation for an infinite lattice is given by

$$
f_{\xi}=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} \hat{f}(k) \mathrm{e}^{-\mathrm{i} k \xi} \mathrm{~d} k
$$

and in case of torus

$$
f_{\xi}=\frac{1}{L_{1} \ldots L_{d}} \sum_{k} \hat{f}(k) \mathrm{e}^{-\mathrm{i} k \xi}, \quad k_{i}=\frac{2 \pi l_{i}}{L_{i}}, l_{i}=\overline{0, L_{i}-1}
$$

In the Fourier domain, Eq. (1.3) reads

$$
\begin{equation*}
\left(s+\nu^{\alpha}+w^{\alpha}\right) \hat{G}^{\beta \alpha}-\delta^{\beta \alpha}=\sum_{\gamma} \hat{G}^{\beta \gamma} \hat{w}^{\gamma \alpha}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{G}^{\beta \alpha}(k)=\sum_{\xi} G_{\xi}^{\beta \alpha} \mathrm{e}^{\mathrm{i} k \xi} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{w}^{\beta \alpha}(k)=\sum_{\xi} w_{\xi}^{\beta \alpha} \mathrm{e}^{\mathrm{i} k \xi} \tag{2.4}
\end{equation*}
$$

with the essentially nonzero diagonal elements which can be neglected only for $k=0$ when they reduce in (2.2) because of the identity

$$
\begin{equation*}
w^{\alpha} \equiv \sum_{\gamma} \hat{w}^{\alpha \gamma}(0) . \tag{2.5}
\end{equation*}
$$

Often we need to calculate derivatives with respect to k, this can be easily done using the fact that \hat{G} is the Green's function of Eq. (2.2) yielding

$$
\begin{equation*}
\frac{\partial \hat{G}}{\partial k}=\hat{G} \frac{\partial \hat{w}}{\partial k} \hat{G} \tag{2.6}
\end{equation*}
$$

in matrix notations.
If \boldsymbol{T} is a set of translation vectors then $\boldsymbol{r}=\xi \boldsymbol{T} \equiv \sum_{i=1}^{d} \xi_{i} \boldsymbol{T}_{i}$ is a vector of Cartesian coordinates corresponding to lattice coordinates ξ. If T is the matrix whose columns are the translation vectors then the above transformation can be written as $r_{p}=\sum_{i=1}^{d} T_{p i} \xi_{i}, p=\overline{1, d}$. The transformation rule for wave-vectors is reverse: $k_{i}=\sum_{p=1}^{d} \kappa_{p} T_{p i}$.

2.1. Mean linear displacement and velocity

To find the mean linear displacement, we apply the Tauberian theorem (1.6). First, using (2.6) we derive the identity

$$
\begin{equation*}
\left.\sum_{\xi} G_{\xi}^{\beta \alpha} \xi \equiv \frac{\partial \hat{G}^{\beta \alpha}(k)}{\mathrm{i} \partial k}\right|_{k=0} \equiv \sum_{\gamma \delta \xi} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \xi \hat{G}^{\delta \alpha}(0) \tag{2.7}
\end{equation*}
$$

Now by expanding

$$
\begin{equation*}
\boldsymbol{r}_{(\xi, \alpha)}=\boldsymbol{r}^{\alpha}+\xi \boldsymbol{T} \tag{2.8}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\sum_{x} G_{y x} \boldsymbol{r}_{x}=\sum_{\alpha \gamma \delta \xi} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \xi \boldsymbol{T} \hat{G}^{\delta \alpha}(0)+\sum_{\alpha} \hat{G}^{\beta \alpha}(0) \boldsymbol{r}^{\alpha} . \tag{2.9}
\end{equation*}
$$

For $\nu=0$ the $\operatorname{sum} \sum_{\alpha} \hat{G}^{\beta \alpha}(0)=1 / s$. Because the unit cell is finite

$$
\begin{equation*}
\hat{G}^{\beta \alpha}(s, 0)=s^{-1} p^{\beta \alpha}(\infty)+R^{\beta \alpha}+o(1), s \rightarrow+0, \tag{2.10}
\end{equation*}
$$

where p is the transition probability for the unit cell with the transition rates $\hat{w}^{\beta \alpha}(0)$ and periodic boundary conditions and R is some matrix. Now by taking the limit in Eq. (1.6) we obtain [Velocity]

$$
\begin{equation*}
\boldsymbol{v}=\sum_{\gamma} p^{\beta \gamma}(\infty)\left(\sum_{\delta \xi} w_{\xi}^{\gamma \delta} \xi\right) \boldsymbol{T} . \tag{2.11}
\end{equation*}
$$

2.2. Mean square displacement and diffusion tensor

Let find the mean square displacement assuming that $\boldsymbol{v}=0$. In the same way as we do it in the previous subsection we derive the identity
$\sum_{\xi} G_{\xi}^{\beta \alpha} \xi_{i} \xi_{j} \equiv-\left.\frac{\partial \hat{G}^{\beta \alpha}(k)}{\partial k_{i} \partial k_{j}}\right|_{k=0} \equiv \sum_{\gamma \delta \xi} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \xi_{i} \xi_{j} \hat{G}^{\delta \alpha}(0)+\sum_{\gamma \delta \lambda \mu \xi \eta} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \hat{G}^{\delta \lambda}(0) w_{\eta}^{\lambda \mu} \hat{G}^{\mu \alpha}(0)\left(\xi_{i} \eta_{j}+\eta_{i} \xi_{j}\right)$
and obtain

$$
\begin{align*}
& \sum_{x} G_{y x} \boldsymbol{r}_{x} \otimes \boldsymbol{r}_{x}=\sum_{\alpha \gamma \delta \xi} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \hat{G}^{\delta \alpha}(0)[\xi \boldsymbol{T} \otimes \xi \boldsymbol{T}]+\sum_{\alpha \gamma \delta \lambda \mu \xi \eta} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \hat{G}^{\delta \lambda}(0) w_{\eta}^{\lambda \mu} \hat{G}^{\mu \alpha}(0)[\xi \boldsymbol{T} \otimes \eta \boldsymbol{T}+\eta \boldsymbol{T} \otimes \xi \boldsymbol{T}] \\
&+\sum_{\alpha \gamma \delta \xi} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \hat{G}^{\delta \alpha}(0)\left[\xi \boldsymbol{T} \otimes \boldsymbol{r}^{\alpha}+\boldsymbol{r}^{\alpha} \otimes \xi \boldsymbol{T}\right]+\sum_{\alpha} \hat{G}^{\beta \alpha}(0) \boldsymbol{r}^{\alpha} \otimes \boldsymbol{r}^{\alpha} \tag{2.13}
\end{align*}
$$

Now using (2.10) and the condition $\boldsymbol{v}=0$ we obtain [DiffusionTensor]

$$
\begin{equation*}
\mathbf{D}=\frac{1}{2} \sum_{i j} \sum_{\gamma} p^{\beta \gamma}(\infty)\left(\sum_{\delta \xi} w_{\xi}^{\gamma \delta} \xi_{i} \xi_{j}+\sum_{\delta \lambda \mu \xi \eta} w_{\xi}^{\gamma \delta} R^{\delta \lambda} w_{\eta}^{\lambda \mu}\left(\xi_{i} \eta_{j}+\eta_{i} \xi_{j}\right)\right) \boldsymbol{T}_{i} \otimes \boldsymbol{T}_{j} \tag{2.14}
\end{equation*}
$$

2.3. Diffusion length

By substituting (2.13) into (1.12) and using the identity $\sum_{x} G_{y x}(0) \nu_{x}=1$ we obtain [DiffusionLength]

$$
\begin{align*}
& \boldsymbol{\Lambda}_{\beta}=\frac{1}{2} \sum_{i j}\left[\sum_{\gamma} \hat{G}^{\beta \gamma}(0)\left(\sum_{\delta \xi} w_{\xi}^{\gamma \delta} \xi_{i} \xi_{j}+\sum_{\delta \lambda \mu \xi \eta} w_{\xi}^{\gamma \delta} \hat{G}^{\delta \lambda}(0) w_{\eta}^{\lambda \mu}\left(\xi_{i} \eta_{j}+\eta_{i} \xi_{j}\right)\right) \boldsymbol{T}_{i} \otimes \boldsymbol{T}_{j}\right. \\
&\left.+\sum_{\gamma \delta \xi} \hat{G}^{\beta \gamma}(0) w_{\xi}^{\gamma \delta} \hat{G}^{\delta \alpha}(0) \nu^{\alpha}\left(\xi_{i} \boldsymbol{T}_{i} \otimes \boldsymbol{r}_{j}^{\alpha}+\xi_{j} \boldsymbol{r}_{i}^{\alpha} \otimes \boldsymbol{T}_{j}\right)+\sum_{\alpha} \hat{G}^{\beta \alpha}(0) \nu^{\alpha}\left(\boldsymbol{r}_{i}^{\alpha} \otimes \boldsymbol{r}_{j}^{\alpha}\right)\right] \tag{2.15}
\end{align*}
$$

2.4. One-dimensional example

Let consider one-dimensional lattice with two sites (1 and 2) per unit cell and nearest neighbor transitions so that all the nonequivalent rates are w_{12}, w_{21} (intracell), w_{10}, w_{01} (intercell, here 0 denotes replica of site 2). Equation (2.2) reads

$$
\hat{G}\left(\begin{array}{cc}
s+w_{12}+w_{10} & -w_{12}-w_{10} \mathrm{e}^{-\mathrm{i} k} \tag{2.16}\\
-w_{21}-w_{01} \mathrm{e}^{\mathrm{i} k} & s+w_{21}+w_{01}
\end{array}\right)=1 .
$$

Let denote $w_{\text {sum }}=w_{12}+w_{21}+w_{10}+w_{01}$. The stationary solution for $k=0$ is

$$
\pi=w_{\text {sum }}^{-1}\left(\left(w_{21}+w_{01}\right) \quad\left(w_{12}+w_{10}\right)\right) \quad \text { and } \quad R=w_{\text {sum }}^{-2}\left(\begin{array}{cc}
\left(w_{12}+w_{10}\right) & -\left(w_{12}+w_{10}\right) \tag{2.17}\\
-\left(w_{21}+w_{01}\right) & \left(w_{21}+w_{01}\right)
\end{array}\right)
$$

Hence the velocity

$$
\begin{equation*}
v=\frac{w_{01} w_{12}-w_{21} w_{10}}{w_{\mathrm{sum}}} a \tag{2.18}
\end{equation*}
$$

and the diffusion coefficient for the case $v=0$ (this condition is essential)

$$
\begin{equation*}
D=\frac{1}{2} \frac{w_{01} w_{12}+w_{21} w_{10}}{w_{\mathrm{sum}}} a^{2} \tag{2.19}
\end{equation*}
$$

where a is the unit cell length.
For quasisymmetric random walk in zero external field

$$
\begin{equation*}
D=\frac{\left(\left(w_{01} w_{10}\right)^{-1 / 2}+\left(w_{12} w_{21}\right)^{-1 / 2}\right)^{-1}}{2 \cosh \frac{\varepsilon_{12}}{2 T}} a^{2} \tag{2.20}
\end{equation*}
$$

For a lattice with one site per unit cell, $v=\left(w_{01}-w_{10}\right) a$. For $v=0$ the diffusion coefficient $D=w_{01} a^{2}$.
Importantly, when merging sites by taking an infinite rate limit one has to rescale the rest of rates appropriately to obtain a model with lower number of sites. For example, to derive the 1 -site model from the 2 -site one described above, one need to take a limit $w_{12}=w_{21} \rightarrow \infty$ and then rescale rates as follows: $w_{01,01}^{1 \text {-site }}=w_{01,01}^{2-\text {-site }} / 2$.

2.5. Primitive lattices

For a primitive lattice there is only one site per unit cell. Therefore $\hat{G}^{\beta \alpha}(s, 0)=s^{-1}$ and

$$
\begin{equation*}
\mathbf{D}=\frac{1}{2} \sum_{x} w_{0 x} \boldsymbol{r}_{x} \otimes \boldsymbol{r}_{x} \tag{2.21}
\end{equation*}
$$

In particular, for nearest neighbor hopping on hypercubic, fcc, and bcc lattices $\mathbf{D}=w a^{2} \mathbf{1}$, where a is the length of the side of the cubic unit cell. For triangular lattice there is a prefactor $3 / 2$ in this formula.

§3. Symmetric spectral problem

Let the transition rates be symmetric and

$$
\begin{equation*}
H_{x y}=-\left(\nu_{x}+w_{x}\right) \delta_{x y}+w_{x y} \tag{3.1}
\end{equation*}
$$

so that H is the symmetric matrix. Let consider the following eigenvalue problem

$$
\begin{equation*}
\sum_{y} H_{x y} \psi_{y}=E \psi_{x} \tag{3.2}
\end{equation*}
$$

For a periodic lattice

$$
\begin{equation*}
H_{(\xi, \alpha)(\eta, \beta)}=H_{\eta-\xi}^{\alpha \beta}=H_{\xi-\eta}^{\beta \alpha}, \tag{3.3}
\end{equation*}
$$

and the normalized eigenvectors of (3.2) are given by

$$
\begin{equation*}
\psi_{(\xi, \alpha)}=\frac{1}{\sqrt{V}} u^{\alpha} \mathrm{e}^{\mathrm{i} k \xi}, \quad k_{i}=\frac{2 \pi l_{i}}{L_{i}}, l_{i}=\overline{0, L_{i}-1}, i=\overline{1, d}, V=\prod_{i=1}^{d} L_{i} \tag{3.4}
\end{equation*}
$$

where u is the solution of the reduced to the unit cell eigenvalue problem

$$
\begin{equation*}
\sum_{\beta} \hat{H}^{\alpha \beta} u^{\beta}=E u^{\alpha} \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\hat{H}^{\alpha \beta}(k)=\sum_{\xi} H_{\xi}^{\alpha \beta} \mathrm{e}^{\mathrm{i} k \xi} \tag{3.6}
\end{equation*}
$$

The eigenelements can be enumerated by two indices: the wave-vector k and the branch index γ running the unit cell. Because H is symmetric, \hat{H} is Hermitian and

$$
\begin{equation*}
\hat{H}^{\alpha \beta}(-k) \equiv \overline{\hat{H}^{\alpha \beta}(k)} \equiv \hat{H}^{\beta \alpha}(k) \tag{3.7}
\end{equation*}
$$

The Green's function $G(s) \equiv(s-H)^{-1}$. Because for a symmetric matrix the spectrum is nondefective,

$$
\begin{equation*}
G_{x y}(s)=\sum_{E} \frac{\psi_{x}(E) \bar{\psi}_{y}(E)}{s-E} \tag{3.8}
\end{equation*}
$$

For a periodic lattice we obtain

$$
\begin{equation*}
G_{\xi 0}^{\alpha \beta}(s)=\frac{1}{V} \sum_{k, \gamma} \frac{u_{\gamma}^{\alpha}(k) \bar{u}_{\gamma}^{\beta}(k)}{s-E_{\gamma}(k)} \mathrm{e}^{\mathrm{i} k \xi} \tag{3.9}
\end{equation*}
$$

For a Hermitian operator the local density of states is defined:

$$
\begin{equation*}
\rho_{x}(s)=\sum_{E}\left|\psi_{x}(E)\right|^{2} \delta(s-E) \equiv \mp \frac{1}{\pi} \Im G_{x x}(s \pm \mathrm{i} 0) \tag{3.10}
\end{equation*}
$$

In practical calculations for finite configuration space δ-function is replaced by Gaussian or Lorentz lineshapes. The latter is obtained when the zero in the above formula is replaced by some finite value. The total density of states

$$
\begin{equation*}
\rho(s)=\sum_{x} \rho_{x}(s)=\sum_{E} \delta(s-E) . \tag{3.11}
\end{equation*}
$$

For a periodic lattice it is convenient to renormalize the density of states by the number of unit cells V, so that

$$
\begin{equation*}
\rho^{\alpha}(s)=\sum_{k, \gamma}\left|u_{\gamma}^{\alpha}(k)\right|^{2} \delta\left(s-E_{\gamma}(k)\right) . \tag{3.12}
\end{equation*}
$$

In local minimums of $E_{\gamma}(k)$ function it can be expanded in k. The matrix with (p, q) elements

$$
\begin{equation*}
\frac{1}{\hbar^{2}} \sum_{i, j=1}^{d} T_{p i} \frac{\partial^{2} E_{\gamma}(k)}{\partial k_{i} \partial k_{j}} T_{q j}, \quad \frac{\hbar^{2}}{m_{\mathrm{e}}} \approx 7.6200 \mathrm{eV} \AA^{2} \tag{3.13}
\end{equation*}
$$

is the inverse mass tensor, its eigenvalues give the inverse effective masses and the corresponding eigenvectors give the Euclidean directions for the quasiparticle moving with this mass.

3.1. Path expansion

Let

$$
H=\left(\begin{array}{cc}
H_{\text {sys }} & V^{+} \tag{3.14}\\
V & H_{\mathrm{env}}
\end{array}\right) \text { and } \tilde{H}=H_{\mathrm{sys}}+V^{+}\left(E-H_{\mathrm{env}}\right)^{-1} V .
$$

Then we can expand the renormalized matrix elements in series of transfer integrals as follows [PathExpansion]:

$$
\begin{equation*}
\tilde{t}_{i j}=t_{i j}+\sum_{\alpha} \frac{t_{i \alpha} t_{\alpha j}}{E-\varepsilon_{\alpha}}+\sum_{\alpha, \beta} \frac{t_{i \alpha} t_{\alpha \beta} t_{\beta j}}{\left(E-\varepsilon_{\alpha}\right)\left(E-\varepsilon_{\beta}\right)}+\cdots, \tag{3.15}
\end{equation*}
$$

where $i, j, \cdots \in$ 'sys' and $\alpha, \beta, \cdots \in$ 'env', or in short notations:

$$
\begin{equation*}
\tilde{t}=\sum_{n=0}^{\infty} \tau^{n} t, \text { where } \tau_{i \alpha}=\frac{t_{i \alpha}}{E-\varepsilon_{\alpha}} \text { and } \tau_{\alpha \beta}=\frac{t_{\alpha \beta}}{E-\varepsilon_{\beta}} \tag{3.16}
\end{equation*}
$$

References

[Zhugayevych13] A Zhugayevych, O Postupna, R C Bakus II, G C Welch, G C Bazan, S Tretiak, Ab-initio study of a molecular crystal for photovoltaics: light absorption, exciton and charge carrier transport, J Phys Chem C 117, 4920 (2013)

