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Notations

References to procedures from LatticeTools package (https://zhugayevych.me/maple/LatticeTools/)
are marked as [procedure name|. Calculation of velocity and diffusion tensor can be cited as Ref.[Zhugayevych13].

§1. Introduction

By lattice we mean any subset X C Z¢ immersed in R?, so that for any point € X the vector r, € R? is
defined. We consider a random walk problem whose sojourn probability p,(t) is governed by the equation

De = _pa:(Vx + wx) + szwzam (11)

z

where w,, is the transition rate from z to x and
Wy = Zwm, (1.2)
z

here and throughout the text a sum without limits means the sum over all possible values of the indicated
variable. The transition probability py.(t) is the solution of Eq. (1.1) with the initial condition py,(0) = dyq.
The Laplace transform of py,(t) is the Green’s function Gy, (s) satisfying the equation

(s + vy + wy)Gyy — Oyo = Z Gy Wz (1.3)

To find a large-time asymptotics, the Tauberian theorem is useful:

Hh
G ~ s HFop(1 0 t) ~ ———p(t), t = 1.4
$Gyals) ~ 57(1/5), 5= +0 = pyull) ~ o elt), = o, (14)
where ¢ is a slow varying function. In particular,
Pyz(00) = lim sGy(s) (1.5)

s—0

if the limit exists. Next,

Zpym(t)rx ~ovt+a(t), t > o0 <= SZny(s)rm ~wv/s+ay(1l/s), s = +0 (1.6)

T


https://zhugayevych.me/maple/LatticeTools/

2 Periodic lattice

here v is the stationary velocity and for v = 0 the vector a gives the mean stationary position (both may
depend on y). Finally, if v = 0 then the positively definite diffusion tensor is defined by

Zpyx(t) Ty @1y ~ 2Dt t — 00 (1.7)
T
so that )
.S
D :lli%?ZGy””(s) Ty @ Ty (1.8)
T

The diffusion coefficient is tr D/d. In the ergodic case both v and D do not depend on y.
The integral

t
P =i [ pa(r)ar (19)
0
gives the absorption probability at the site x. Using Tauberian theorems
P (00) = Gya(0)v (1.10)

(if the limit exists). If D = 0 then the absorption area tensor is defined by
1
Ay = 5Zp;‘;'f‘(oo) Ty @ Ty (1.11)
T

The diffusion length is /(tr Ay),. If v, does not depend on z then from (1.3) and (1.8) it follows that
lim vAy(v) = D(v = 0). (1.12)

v—0
Let the random walk be quasisymmetric, that is

Yoy _ o=77" (1.13)

Wy

with some on-site energies € and positive temperature T'. Then if ¢ and w are bounded, and the immersion in
R? is regular (the ratio wyy/|ry — 7| is bounded), it can be shown (show!) that v = 0. Next, if we substitute
€y — €; — T E, then in the limit of vanishing external field E we obtain the Einstein relation (prove!):

v~T 'DE. (1.14)

§2. Periodic lattice

Let X have a translational invariance so that each point x € X can be presented as z = (&, «), where ¢
runs Z¢ or a torus L¢ (L means Li,...,Lg and & = 0, L; — 1), a runs the unit cell, and

_ _ .. Ba
Viga) =V W(n,B)(¢a) = We_p- (2.1)

The Eq. (1.3) can be simplified by Fourier transformation with respect to the variable £, which for a function
fe is defined as

Foe)y =" fee™,
3
where k€ = Zgzl k;&. The inverse transformation for an infinite lattice is given by

fe= (2717)61 / f(k)e * dk

and in case of torus



In the Fourier domain, Eq. (1.3) reads

(s +v*+ wo‘)@ﬁa —gfe = Z G/BVUA;W, (2.2)
0l
where
GPok) =) G (2.3)
¢
and
(k) = wlet (2.4)
¢

with the essentially nonzero diagonal elements which can be neglected only for £ = 0 when they reduce in (2.2)
because of the identity

w® = *7(0). (2.5)

Often we need to calculate derivatives with respect to k, this can be easily done using the fact that G is

the Green’s function of Eq. (2.2) yielding
~OW A
— =G=G 2.6
ok ok (26)

in matrix notations.

If T is a set of translation vectors then r = £T = Zle &T; is a vector of Cartesian coordinates corre-
sponding to lattice coordinates £. If T" is the matrix whose columns are the translation vectors then the above
transformation can be written as r, = Zle Tpi&, p = 1,d. The transformation rule for wave-vectors is reverse:

ki = Zzzl Iﬁ}pri.

2.1. Mean linear displacement and velocity

To find the mean linear displacement, we apply the Tauberian theorem (1.6). First, using (2.6) we derive
the identity

; G = 8%2}{“‘;) . = % GP1(0) w¢ G*(0). (2.7)
Now by expanding
Tea) =1 +£&T (2.8)
we obtain
> Gyara =D GP0) wPeT G(0) + > G (0)r”, (2.9)
z ay8€ a

For v = 0 the sum ), GB(0) = 1/s. Because the unit cell is finite
GP%(s5,0) = s71p%%(00) + R%* + 0(1), s — 40, (2.10)

where p is the transition probability for the unit cell with the transition rates @w?® (0) and periodic boundary
conditions and R is some matrix. Now by taking the limit in Eq. (1.6) we obtain [Velocity]

v="> p(c0) [ D ul¢| T (2.11)
v ¢
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2.2. Mean square displacement and diffusion tensor

Let find the mean square displacement assuming that v = 0. In the same way as we do it in the previous
subsection we derive the identity

o 0GP (k ; o A e
Y GG = - éMl(c) =Y G0 wl6g G 0)+ D GP0)wGN0) wy G (0) (Eimy + i)
3 Jolk=0 o€ YOAuED
(2.12)
and obtain
D Grare@re =Y GHN(0) wlG0) ETRET]+ Y GF(0) wd G 0) wy G (0) [ET @nT +yT LT
z ayé§ aySApugEn

+ 30 G0 wG0) [T @ v + 70 @ €T+ GP(0) @ 7. (213)
ayoé «

Now using (2.10) and the condition v = 0 we obtain [DiffusionTensor]

1 5 5

=52.2.97(0) Zw” &6+ Y wl R wy*(Gny +mi&) | Ti @ Ty (2.14)
ijo SAuén

2.3. Diffusion length

By substituting (2.13) into (1.12) and using the identity ) Gy»(0)v, = 1 we obtain [DiffusionLength]

- %Z [ZG’B’Y Zw’ﬂsglgj + Z w’wGJ)\ (5177] +mi&5) | T © T
iy

dAuén
+) Gﬂ”(o) w GO0) v* (& Ti@rf + & 18 @ Ty) + Y GH0) v* (rf @ rf) } . (2.15)
23 «

2.4. One-dimensional example

Let consider one-dimensional lattice with two sites (1 and 2) per unit cell and nearest neighbor transitions
so that all the nonequivalent rates are wig, wa; (intracell), wig, wp; (intercell, here 0 denotes replica of site 2).
Equation (2.2) reads

ik

R _ o —ik
a s+ wig2 + w10 w12 — Wi -1 (2.16)
—Ww91 — Wop1€ s+ w21 + wo1

Let denote wgym = w12 + we1 + wig + wo1. The stationary solution for £ = 0 is

-1 —o [ (w2 +wig) —(wiz2 +wio)
= and R = . 2.17
T s ((w21 * w01) (w12 * wlo)) N Houm (—(um + w01) (w21 + wol) ( )
Hence the velocity
p = Lorwiz2 = w21w10a7 (2.18)
Wsum
and the diffusion coefficient for the case v = 0 (this condition is essential)
1

p — - W2 + w21w10 a2, (2.19)

2 Wsum

where a is the unit cell length.
For quasisymmetric random walk in zero external field
-1
<(w01w10)_1/2 + (w12w21)_1/2)

2
D= coh 57 a?. (2.20)

For a lattice with one site per unit cell, v = (wp; — wig) a. For v = 0 the diffusion coefficient D = wo;a?.

Importantly, when merging sites by taking an infinite rate limit one has to rescale the rest of rates appropri-
ately to obtain a model with lower number of sites. For example, to derive the 1-site model from the 2-site one

described above, one need to take a limit wis = w21 — oo and then rescale rates as follows: wile = 815}}16 /2.



2.5. Primitive lattices

1

For a primitive lattice there is only one site per unit cell. Therefore G’Bo‘(s, 0) = s~ and

1
D= Zx: WoaTe © Ty (2.21)

In particular, for nearest neighbor hopping on hypercubic, fcc, and bee lattices D = wa?1, where a is the
length of the side of the cubic unit cell. For triangular lattice there is a prefactor 3/2 in this formula.

§3. Symmetric spectral problem
Let the transition rates be symmetric and
Hyy = — (Vg + w3 )0zy + Way, (3.1)

so that H is the symmetric matrix. Let consider the following eigenvalue problem

> Hyyty = Ety. (3.2)
Y

For a periodic lattice
_ pgoB _ ppBa
He o)np) = H,le = He (3.3)

and the normalized eigenvectors of (3.2) are given by

d

a) — —ue' y kZZ: -, liZO,Li—l, Zzl,d, V= Li, 3.4
P(ea) JV L; Zl_[l (3.4)

where u is the solution of the reduced to the unit cell eigenvalue problem
> HW = Bu® (3.5)

B
with X .

P (k) = H ek (3.6)

3

The eigenelements can be enumerated by two indices: the wave-vector k and the branch index + running the
unit cell. Because H is symmetric, H is Hermitian and

HP(—k) = HoB(k) = H (k). (3.7)

The Green’s function G(s) = (s — H)~!. Because for a symmetric matrix the spectrum is nondefective,

Va(E)Y, (E)
Gay(s) = E # (3.8)
E
For a periodic lattice we obtain
1 (k) (k) .
af _ - y 2 iké
Gy (3) v 37 S ER) e'™s. (3.9)

For a Hermitian operator the local density of states is defined:

pe(s) = 3 [0 (B)3(s — E) = :F%%Gm(s +i0), (3.10)
E
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In practical calculations for finite configuration space d-function is replaced by Gaussian or Lorentz lineshapes.
The latter is obtained when the zero in the above formula is replaced by some finite value. The total density

of states
:pr(s) :Z(S(S—E). (3.11)
T E
For a periodic lattice it is convenient to renormalize the density of states by the number of unit cells V', so that

Z u (k)[*5(s — B, (k). (3.12)

In local minimums of F. (k) function it can be expanded in k. The matrix with (p, ¢) elements

(92E h? 2
= Z T 8k Tyjs 5 ~ 76200 eVA", (3.13)

7.7_

is the inverse mass tensor, its eigenvalues give the inverse effective masses and the corresponding eigenvectors
give the Euclidean directions for the quasiparticle moving with this mass.

3.1. Path expansion

Let
H + = _
H= ( e I-‘I/e nv) and H = Hyys + V1 (E = Heny) ' V. (3.14)
Then we can expand the renormalized matrix elements in series of transfer integrals as follows [PathExpansion]:
- tmtaj tiatastsj
tij = tij + +- 3.15
1y — Yig Z ;(E_Ea)(E_EB) ( )
where ¢, j,--- € ‘sys’ and o, §,--- € ‘env’, or in short notations:
- ti t
t= Z:T"t, where 7;, = Eiiaga and 7,3 = E%ﬁsg (3.16)
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