
Dynamic correlation function of lattice gas in c(2×2) phase

P. Argyrakis, M. Maragakis
Department of Physics, University of Thessaloniki, Greece

O. Chumak, A. Zhugayevych
Department of Theoretical Physics, Institute of Physics, Kyiv, Ukraine

Fig. 1: STM movie: Diffusion of

N adatoms on Fe(100) surface

[M. Pedersen et al., Phys. Rev.

Let. 84, 4898 (2000)]

Fig. 2: MC simulations: Lattice gas

with nearest neighbors repulsion in

c(2×2) phase at half coverage and

temperature T = 0.8 Tc
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System specification

System:

• Square lattice of L0 × L0 with periodic boundary conditions

• Lattice coordinates are denoted by a single letter: x = (x1, x2)

• Two particles cannot occupy the same point

• Particles interact via nearest neighbor repulsion so that

βH =
1
2

∑
x,e

φ nxnx+e,

where β = T−1, φ > 0 – interaction parameter, nx – number of
particles at site x, e means a vector of unit length (the sum is
over nearest neighbors)

We have two parameters: φ and c (average concentration of
particles). The system is under the following conditions:

• subcritical temperatures, i.e. φ > φc ≈ 1.76 so that q = e−φ is a
small parameter

• c is nearly 1/2 so that c(2×2) phase is pronounced

• system is at thermodynamical equilibrium (and no domain walls)

Dynamics:

• Single-particle-jump approximation

• Master equation for an alone particle: ṗx = −4px +
∑

e px+e

• Transition rate from a given site is ekφ, where k is the number of
nearest neighbors (i.e. overcoming of activation barrier)



Historical notes

• Lattice gas = Ising model with conserved spin dynamics

• Static properties are well studied

• Seminal papers: Glauber R J, JMP 4, 294 (1963); Kawasaki K,
PR 145, 224 (1966); Heims S P, PR 138, A587 (1965)

• There is no efficient kinetic theory similar to BBGKI hierarchy in
classic gas

• Diffusional approximation: O. Chumak

Objectives

• To develop an analytic method for studying kinetic phenomena
in lattice systems in ordered phases, in particular, to obtain the
dynamic correlation function: 〈nx(t)ny(0)〉

• To explain MC simulations (performed by P. Argyrakis and
M. Maragakis) for the correlation function for fluctuations of
number of atoms in a selected probe area at small times:

〈δN(t)δN(0)〉 =
∑
x,y

〈δnx(t)δny(0)〉

• To substantiate the diffusional approximation (developed by
O. Chumak) used in our previous papers

Open problems

• To extend the method to n2 ∼ q4 level that is necessary for
accurate description of generation-recombination processes. The
principal complication is that we must proceed from one-particle
description to many-particle



BBGKI hierarchy for hard-core lattice gas

Master equation (time argument is omitted, symmetric distribution
function is chosen):

ṗ({x}) =
N∑

i=1

∑

|y−xi|=1

[
p(x1, . . . ,

i

ŷ, . . . , xN )− p(t; {x})
]

+2Nnn({x})p({x}),
(1)

where p({x}) is the probability of configuration {x} and

Nnn({x}) =
∑

1≤i<j≤N

I {|xi − xj | = 1} (2)

is the number of nearest neighbor pairs in configuration {x}.
The lowest equations of the BBGKI hierarchy:

ṗ(x1) =
∑

|y−x1|=1

[p(y)− p(x1)] + 2(N − 1)
∑

|y−x1|=1

p(x1, y)

+(N − 1)(N − 2)
∑

|y−z|=1

p(x1, y, z),
(3)

ṗ(x1, x2) =
∑

|y−x1|=1

[p(y, x2)− p(x1, x2)] +
∑

|y−x2|=1

[p(x1, y)− p(x1, x2)]

+2I {|x1 − x2| = 1} p(x1, x2) + 2(N − 2)
∑

|y−x1|=1
∪|y−x2|=1

p(x1, x2, y)

+(N − 2)(N − 3)
∑

|y−z|=1

p(x1, x2, y, z).

(4)



Snapshots
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Fig. 3: Snapshot for φ = 2.0 (T = 0.8 Tc) and c = 0.5 (half coverage)
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Fig. 4: “Defects only” view
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Fig. 5: Topological charges



Structural defects

1) Level q2: excess particles and vacancies with concentrations q2 at
exact half coverage

2) Level q3:

excess particle monomer (q2)

flip-flop pair (2q3)

vacancy monomer (q2)

2) Level q4: isolated monomers, side and corner dimers, monomers at
their jumps, isolated and double flip-flop pairs



Kinetic equation for monomers

(a) (b) (c)
Fig. 6: Essential configurations for excess particle monomer: a) excess

particle monomer (pα); b,c) transient states (pee′
σ and pe,−e

σ ). Centering

is indicated by arrow. Defective sites are encircled

Kinetic equation for excess particle monomer (lattice dimension d is
shown explicitly):





ṗα = −2d(2d− 1)q−1pα + q1−2d
∑

e 6=e′ p
ee′
α−e,

ṗee′
σ = −2q1−2dpee′

σ + q−1(pσ+e + pσ+e′), e′ 6= e.
(5)

Kinetic equation for flip-flop pairs

(a) (b)

Fig. 7: Essential configurations for flip-flop pairs ((a) – p0, (b) – pe)

Kinetic equation:




ṗ0 = −2dp0 + q1−2dpe,

ṗe = −q1−2dpe + p0.
(6)



Fluctuations in probe area

Correlation function for fluctuations of number of atoms in a probe
area:

〈δN(t)δN(0)〉 = ne

∑
x,y

Gx−y

(
4tq−1

)
+ nv

∑
x,y

Gx−y(4t) + O(q3), (7)

where G is given by its Fourier transform with d = 2:

G(t, k) = exp





t

d




(
d∑

i=1

cos ki

)2

− d2






 (8)

and

ne,v =

√(
c− 1

2

)2

+ q4 ±
(

c− 1
2

)
+ O(q4) (9)

(upper sign is for excess particle monomers).



Validation by MC simulations. I
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Fig. 8: Relative contribution of fluctuations due to flip-flop jumps for

L = 6 and φ = {2.41, 2.70, 3.00} (from top to bottom), points denote MC

data



Validation by MC simulations. II
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Fig. 9: Absolute value of fluctuations per site vs. MC steps for L = 6,

φ = 2.70, c = 0.5
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Fig. 10: Absolute value of fluctuations per site vs. MC steps for L = 20,

φ = 2.70, c = 0.5


