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Charge carrier mobility in naphthalene (20 πe/cell)
Advance in modeling from 2004 [APL 85, 1535] to 2022 [npjCompMat 8, 63]*

Depends on accuracy of

• geometry and force constants
• electronic and vibronic couplings
• e-p Hamiltonian and its solution

How accurate is crystal geometry and force constants?

* GGA+GW, unit cell is taken from experiment at different temperatures
2 / 14



Measuring/predicting crystal structure of naphthalene

PRM 2, 055603 (2018)

• 1% – experimental uncertainty at fixed temperature
• 1% – quantum effects at low temperatures
• 5% – thermal expansion at 300 K

This sets the target accuracy for theoretical methods to 1%,
that is smaller than variation of DFT-D results with functional
=⇒ need methods benchmarking =⇒ need benchmark dataset
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What accuracy of crystal geometry is needed
Depends on goals and feasibility

• Topology and morphology
– generic force fields

• To rank polymorphs by energy,
to match experim. uncertainty
– DFT-D
– advanced force fields

• To not distort electronic structure*
– DFT-D – good but < 1000 atoms
– DFTB – looks the most appropriate
– well-parameterized force fields – how to parameterize

Need a set of well-benchmarked methods to cover all scales

One method to obtain geometry, another method to get electronic structure.
DFTB=Density Functional based Tight Binding
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Why we need separate dataset for organic semiconductors?

Science 355, aah5975 (2017)

Another example: CAM-B3LYP is one of the best for organic
semiconductors but inaccurate for inorganic ones
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Modeling of organic semiconductors: open problems
The table is for molecular systems, but there are also polymers, frameworks, hybrid

single
molecule

cluster,
solution

single
crystal

bulk
glass

films 
…

predict
topology ✓✓ ✓ ? CG

optimize
geometry ✓✓ ✓ DFT-D ?

electronic
structure ✓✓ ✓ ECG localized

excited
states ✓✓ ✓ ? localized

electronic
transfer

NAMD NAMD ? hopping

reactions
…

ECG=Electronic Coarse Graining, NAMD=NonAdiabatic Molecular Dynamics
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Goals

• Create benchmark datasets for organic semiconductors

• Benchmark DFT-D for crystals up to 1000 atoms

• Benchmark DFTB for larger systems

• Benchmark generic force fields

• Benchmark electronic structure methods

• Create library of electronic structure prototypes

• Search for novel electronic structure architectures

• What is maximum possible charge carrier mobility for organic
semiconductors?
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Existing databases relevant to organic semiconductors

• Databases of crystalline organic semiconductors:
large OMDB, OCELOT and small [Yavuz2016]
but not designed for benchmarking

• Benchmark datasets for molecular crystals:
CPOSS, [Reilly2016, Brandenburg2016, Dolgonos2019]
but no extended π-conjugated molecules

• In principle, one can use Cambridge Structural Database
but ambiguity in selection and preprocessing of raw CIFs
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BMCOS: several datasets are needed

cmsos.github.io/bmcos/

• Main polymorph of single-conformer molecules (BMCOS1)

• Polymorphs

• Multi-conformer molecules with side chains

• Polymers

• Metal-organics

BMCOS1 is ready with 67 systems: acenes, oligothiophenes, PAHs,
azaacenes, thienoacenes, imides, quinones, indigos, and others
including TCNQs, stilbene, TTF, C60, see picture at
cmsos.github.io/bmcos/BMCOS1 alt.html
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https://cmsos.github.io/bmcos/index.html
https://cmsos.github.io/bmcos/BMCOS1_alt.html


Nongeometrical parameters available in BMCOS1

• Binding energy Eb (eV)

• Bulk modulus K (GPa) and its derivative K’, MolMod/EOSfit

• Elasticity tensor C (GPa) and derived quantities [Sewell2003]

• Vibrational frequencies at Γ-point and derived quantities F (T )

• Other parameters can be added later
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Methodology of methods benchmarking

• Experimental data from Cambridge Structural Database

• DFT-D tested on a subset of 28 systems for which 0 K
structure can be extrapolated

• Benchmarked functionals: PBE-D3 and r2SCAN-D3

• Selectively benchmarked: PBE-MBD and vdW-DF2

• DFTB and xTB benchmarked against DFT-D

• force fields – we are open for collaboration
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Results: PBE-D3 and r2SCAN-D3
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PBE-D3 – Optimal trade-off between accuracy and cost
• Inaccurate for large atomic charges, but might be corrected

r2SCAN-D3 – Robust but computationally demanding
• Underestimates unit cell volume by 2%
• Slower than PBE-D3 by factor of 2-10
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Results: DFTB and xTB vs PBE-D3
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Tolerable mean deviation but unacceptable max error

13 / 14



Conclusions

• Benchmark dataset of crystalline organic semiconductors has
been proposed

• PBE-D3 is an inexpensive “almost fault-free” method with
accuracy comparable to experimental uncertainty

• r2SCAN-D3 is robust but computationally demanding

• Known DFTB/xTB parameterizations give tolerable mean
deviation but unacceptable max error
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Appendix
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Geometry optimization of molecular crystals
Must be fast, accurate, and produce usable output (will be used many times)

Common mistake: spend minutes for geometry optimization and
then hours to transform the output into a usable form

• Preprocessing
▶ clean up initial geometry (remove disorder, add hydrogens)

• Geometry optimization
▶ Conserve symmetry
▶ Large dynamic range of forces, PES is often flat
▶ Unit cell optimization is nontrivial, especially angles

• Postprocessing
▶ Symmetrize, connect molecules, reorder atoms for consistency
▶ Keep required info (entire cell, molecules partitioning)
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