See examples in idx.mw
L::list(posint) lattice dimensions,
single value implies [L$d] where d=nops(x)x::list(nonnegint) coordinate of a point, x[i]=0..L[i]-1,
if x[i] is out of this range it is reducedn::posint indexindex/symmetric12 array symmetric with respect to the first two indexesDim2(A::{rtable,list}) upper limits of rtable or nops(list), see also
ArrayDims,
rtable_dimsidL(x,L,$)::n enumerates points of a multidimensional latticeiidL(n,L,$)::x inverse of idLidI(m::integer)::n enumerates integers starting from zeroiidI(n)::m inverse of idIidS(ij::[posint$2],$)::n 2D symmetric indexing functioniidS(n,$)::ij inverse of idS,
note that inverse symmetric indexings are not very efficient computationally because of square root operationidA(ij::[posint$2],$)::n 2D antisymmetric indexing functioniidA(n,$)::ij inverse of idAidSS(ijkl::[posint$4],$)::[n1,n2] 4D doubly symmetric indexing functioniidSS([n1,n2])::ijkl inverse of idSSnextpointS(x,$)::x symmetric iterator in multidimensional lattice