See examples in idx.mw
L::list(posint)
lattice dimensions,
single value implies [L$d]
where d=nops(x)
x::list(nonnegint)
coordinate of a point, x[i]=0..L[i]-1
,
if x[i]
is out of this range it is reducedn::posint
indexindex/symmetric12
array symmetric with respect to the first two indexesDim2(A::{rtable,list})
upper limits of rtable or nops(list), see also
ArrayDims,
rtable_dimsidL(x,L,$)::n
enumerates points of a multidimensional latticeiidL(n,L,$)::x
inverse of idL
idI(m::integer)::n
enumerates integers starting from zeroiidI(n)::m
inverse of idI
idS(ij::[posint$2],$)::n
2D symmetric indexing functioniidS(n,$)::ij
inverse of idS
,
note that inverse symmetric indexings are not very efficient computationally because of square root operationidA(ij::[posint$2],$)::n
2D antisymmetric indexing functioniidA(n,$)::ij
inverse of idA
idSS(ijkl::[posint$4],$)::[n1,n2]
4D doubly symmetric indexing functioniidSS([n1,n2])::ijkl
inverse of idSS
nextpointS(x,$)::x
symmetric iterator in multidimensional lattice