Organic Materials for Energy and Optoelectronics Overview of Organic Semiconductors

Andriy Zhugayevych

February 2, 2022

Outline

- Introduction: real world examples
- What is π -conjugated system
- Examples and Applications
- Structure, Functional properties, Challenges
- Research at Skoltech
- · Resources: references, links, further reading

Real world examples: OLEDs

Commercially most successful application of organic semiconductors, \$30 billion in 2019

Real world examples: Solar cells

Largest PCE progress: from 4 to 18% compared to 13-26 for Si and 15-25 for perovskites

How is it made: Solar cells - R2R roll-to-roll processing

Historical example: A century-long story of pentacene

 $\begin{array}{l} \mbox{Charge carrier mobility} \sim 10 \, \frac{\mbox{cm}^2}{\mbox{V} \cdot \mbox{s}} \\ \mbox{(> a-Si, 1/100 of c-Si)} \end{array}$

- Synthesized in 1920s
- Crystal resolved in 1960s
- Used in OFET since 1980s
- Good-quality crystals in 2000s
- Bands resolved in ${\sim}2010$
- Atoms resolved in 2009
- Solution-processable TIPS-P 2007

What is organic semiconductor

- 1. **Organic** built from C with terminal H, possibly with isovalent substitutions (N for CH, O/S for CH₂, F/Cl for H)
- 2. π -conjugated π -electrons on frontier orbitals (next slide)

Number of organic semiconductors is comparable to number of inorganic ones

What is π -conjugated system: example of benzene

- each carbon has 3 sp^2 AOs connected by $\sigma\text{-bonds}$ and 1 $pp\pi\text{-connected}$ AO
- energy of bonding MO is -t per electron

•
$$t_{sp2} = 3.26 \frac{\hbar^2}{md^2} \gg t_{pp\pi} = 0.63 \frac{\hbar^2}{md^2}$$
 [Harrison]

- π-conjugated electronic system is separated from spⁿ-MOs (by 10 eV in terms of NBO energies)
- primary bonding is sp^n , modulated by $pp\pi$ (secondary bond)

What elements can participate in π -conjugation

1	2	a second a s	valence	3	4	(5)	6	7	8
н				strong sp-hybridization					He
Li	Be		¥ shells	В	С	N	0	F	Ne
Na	Mg		d-shell	AI	Si	Р	S	CI	Ar
к	Са		Sc V MnCoCu Ti Cr Fe Ni Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	f-shell	Y Nb Tc Rh Ag Zr Mo Ru Pd Cd	In	Sn	Sb	Те	I	Xe
Cs	Ва	La-Yb	Lu Ta Re Ir Au Hf W Os Pt Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac-No	strong relativistic effects						

- C, N, B as building blocks
- O, F, S, CI via LP and terminal contacts
- *d*-elements via $pd\pi$
- any electronic system in resonance

Examples of π -conjugated systems: molecules

Examples of π -conjugated systems: polymers and 1D

Examples of π -conjugated systems: 2D and 3D

Currently we explore only a small set of possible structural forms

Applications: Organic electronics

- Unlimited possibilities of nanoscale molecular engineering
- Cost effective solution perfect for consumer markets
- Ease of production dominates printed electronics market
- Ease of recycling green technology
- Light weight and flexibility more versatile in use

Other applications

2019 Market Snapshot

More examples and applications

- UV-protection of DNA
- Vision, bioluminescence, sunlight harvesting
- Fluorescent probes for bioimaging
- Charge transport layers
- Capacitors (PEDOT/PSS) and supercapacitors
- Chemical sensors
- Catalysts (transition metal complexes, e.g. water splitting)
- Membranes for water desalination
- THz generators, electrochromic devices, photodiodes, polyelectrolytes, explosives, piezo-, pyro-, ferroelectrics, ...

Any electronic device can be made all-organic

Discussion

"Debunking" myths

- 1. Are organic semiconductors cheap?
- 2. Are organic semiconductors environmentally friendly?
- 3. Are organic semiconductors poor-performers?

Looking for applications

- 4. What organic materials have industry-scale applications
- 5. Organic batteries: major problems and possible solutions
- 6. Short operational lifetime: when it is problem and when is not

Lessons for "startupers"

- 7. How Konarka bankrupted
- 8. How solar cell research moved to Asia

Why π -conjugated molecules are special?

Strong mode-specific electron-phonon coupling

What is electron-phonon coupling?

- piezoelectric coupling: mechanical stress \leftrightarrow electric field
- e-phonon coupling: molecular deformations \leftrightarrow electronic levels

Why electron-phonon coupling in π -conjugated systems is special?

 \implies Unique quasiparticles – solitons in transpolyacetylene

Why π -conjugated molecules are special?

Strong electron-phonon coupling in combination with soft structure

⇒ Electronic properties strongly depend on material morphology, and electronic dynamics is strongly bound to molecular dynamics

also polaron formation, vibronic progression in spectra

In fact, it is very useful in applications:

- Change structure \implies tune electronic properties
- Affect electronic system \implies change structure

Scale problem in organics: solar cell example

Understanding scales: solar cell example

Spatial scales:

- molecule ($\lesssim 1$ nm)
- single phase (\sim 10 nm)
- interfaces (intra and inter)
- functional layer (\gtrsim 100 nm)

Time scales:

- ultrafast intramolecular (fs)
- intermolecular transfer (ps)
- electronic transport (ns)
- transients, degradation (>ns)

Understanding scales: computational perspective

Functional properties of organic semiconductors are often determined by structure on scales up to tens of nm

 \implies atomistic description is needed for up to 10^6 atoms

Challenges

- realistic mesoscale structure (coarse-grained MD)
- accurate intermolecular geometry (best DFT-D)
- accurate electronic structure (best range-separated hybrids)
- accurate charge dynamics (best NAMD)

No direct simulation - only multiscale modeling and "machine learning"

Discussion

- 1. Are there other classes of materials with "split" electronic structure (σ -bonds and π -system)?
- 2. Are there other classes of materials with similar electron-phonon interaction effects?

Structural motifs

- Locally 2D due to nature of π -conjugation
- Bond length alternation (BLA) pattern
- Rigid fused rings + floppy dihedrals + vdW contacts
- Usually functionalized (tuning, soluble side-chains, transition metals, bridges)

Structural classes

- Graphene, carbon nanotubes
- Conjugated polymers
- Oligomers
- Small-molecule crystals
- All-organic frameworks
- Metal organic frameworks
- Biopolymers with aromatic fragments and macromolecules
- Blends
- Strongly correlated systems

Rational design: Quasi-1D π -conjugated systems

(majority of materials used in organic electronics)

- Have block structure with few interconnections per block
- Each block is rigid, limited number of local structural patterns
- \implies Success of simple force fields
 - The π -conjugated system of each block is closed-shell
 - Inter-block couplings $\sim 1 \mbox{ eV} \ll \mbox{ bandgap of blocks}$
 - Intermolecular couplings $\sim 0.1 \mbox{ eV} \ll \mbox{ bandgap of molecules}$
- \implies Can be rationally designed by block assembly approach

Rational design: Improving morphology

- Isovalent substitutions and "side chain engineering"
- Processing conditions, e.g. additives

Challenges

- Fast degradation and aging mechanisms to be studied
- Large batch-to-batch variations technology
- Mediocre performance (5% of elements) hybrids
- Limited charge carrier mobility improving
- Doping is nontrivial solvable
- Too complex to characterize/describe consider it as excellent research opportunity for you

Research at Skoltech and in Russia

Theoreticians:

• Sergei Tretiak, Andriy Zhugayevych – see also this page

Experiment:

- Keith Stevenson (CEST CREI)
- Albert Nasibulin (CPQM CREI) carbon nanotubes
- Pavel Troshin (IPCP)
- Sergey Ponomarenko (ISPM)
- Dmitry Paraschuk (MSU)

Events:

• IFSOE (International Fall School on Organic Electronics)

Resources

- Wikipedia
- List of references
- A Koehler, H Bassler, Electronic Processes in Organic Semiconductors: An Introduction (Wiley, 2015) *in library More specifically* Sections 1.1-1.4
- S R Forrest, Organic Electronics: Foundations to Applications (OUP, 2020)
 More specifically Chapter 1