Organic Materials for Energy and Optoelectronics

Materials characterization

Keith Stevenson, Andriy Zhugayevych, Igor Gorokh Feb 11, 2022

Reading

Textbooks

- *Koehler* 1.5 UV-Vis, 2.4.4 CV
- Forrest by Index
- Wikipedia by keyword

Reviews

• R Wu, M Matta, B Paulsen, J Rivnay, Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials, Chem Rev (2022)

Lecture

 K Stevenson, Spatially-resolved Measurements of Semiconductor Interfaces (2022) – see Canvas/Files

Topics

- Skoltech facilities
- Scanning near-field microscopies
- UV-Vis spectroscopy
- IR/Raman spectroscopy
- Cyclic voltammetry
- X-ray crystallography
- XPS
- NMR
- DSC
- Mass spectroscopy

X-ray Powder Diffractometer (Huber G670)

X-Ray Powder Diffractometer (Bruker D8 Advance)

DXRxi Raman Imaging Microscope (Thermo Fisher Scientific) FTIR spectrometer (Alpha II Bruker)

Potentiostat/galvanostat PGSTAT 302N (Metrohm Autolab)

Thermogravimetry – Differential Scanning Calorimetry analyzer (STA 449 F3 Jupiter) with Quadrupole Mass Spectrometer (QMS 403 D Aëolos)

Scanning Electronic Microscope (Tescan Solaris)

Scanning Electronic Microscope (Quattro S)

https://www.skoltech.ru/research/en/advanced-imaging-core-facility/

Scanning near-field microscopies

See Lecture of Keith Stevenson in Canvas/Files:

- Atomic Force Microscopy
- Conductive (Probe) Atomic Force Microscopy
- Kelvin Probe Force Microscopy
- Scanning Electron Microscopy and TEM
- Grazing incidence X-ray diffraction and small-angle scattering
- Light Beam Induced Current Imaging
- Time of Flight Secondary Ion Mass Spectrometry
- Raman Microscopy

Discussion: Scanned Probe Microscopy

Several SPM techniques were discussed for characterization of mixed electronic/ionic conductors.

- Which method is best for characterizing local electronic conductivity? Why is it important for resolving spatial distribution of electronic conductivity?
- Which method is best for characterizing structural and morphological heterogeneities?
- Which method is best for characterizing buried interfaces or interfaces at electrode/semiconductor devices?

Discussion: dielectric spectroscopy

- UV-Vis
- IR/Raman
- THz spectroscopy
- Electrochemical
 Impedance
 Spectroscopy

Discussion: UV-Vis spectroscopy

- Why is excitation energy lower for longer and DA molecules?
- Why is this picture not used for inorganic semiconductors?
- Why are spectra of molecules and crystals different?
- Why is there a shift in 0-0 transition? See e.g. JCP 113, 11372 (2000)

Discussion: IR/Raman spectroscopy

- Compare sensitivity of IR/Raman spectra to electronic state.
- What types of motions/vibrations are the most important for Raman spectra of organic semiconductors?
- How do anharmonicity, mode mixing, quantum phenomena influence vibrational spectra?

Discussion: Cyclic voltammetry

- What causes the stepwise redox processes of organic molecules containing two or more identical electroactive pieces?
- How is it possible to investigate redox activity of insoluble organic molecules/polymers? How the corresponding CV curves may look like?
- What effects and side processes may distort the results of HOMO/LUMO level energy evaluation?

Discussion: X-ray crystallography

RSC Adv., 2016, 6, 78791-78794

XRD spectra of <u>one sample</u> obtained on different-configured diffractometers

- Why could diffraction spectra of organic thin films differ from these materials in powder form? Discuss what additional information can give a comparison of those spectra.
- Suppose which parameters may affect the quality of the XRD spectrum in the right picture.

NMR spectroscopy

Principles of NMR are quite complicated whereas the method is rather routine

¹³C and ¹H nuclei have spin (s = $\frac{1}{2}$);

Food Chemistry, 2021, 342, 128258

In NMR spectra of organic molecules, each C and H atom has a set of parameters allowing these compounds to be characterized both <u>qualitatively and quantitively</u>

NMR spectroscopy

Source: © Jonathan Goodman/University of Cambridge

AIST Database

SDBS Compounds and Spectral Search

Compound Name:			Atoms:			Spectrum:		
		match partial 🗸	C(Carbon)	to		Check the spectra of your interest.		
Molecular Formula:		H(Hydrogen) N(Nitrogen)	to		$\square \ ^{13}C NMR \square Raman$			
C, H, then the other elements alphabetical order, "%,*" for t	, then the other elements are abetical order, "%,*" for the wild card		O(Oxygen) F(Fluorine)	to		IR Peaks(cm ⁻¹): Allowance		
Molecular Weight:			CI(Chlorine)	to		"," or space is the separator for multiple peaks.		
Numbers between left and rig	t columns		Br(Bromine)	to		Use "-", to set a range:. eg. 550-750,1650 3000-		
Up to the first place of a deci	p to the first place of a decimal point		l(lodine)	to		Transmittance < 80 % ¹³ C NMR Shift(ppm): Allowance ± 2.0		
CAS Registry No.:			S(Sulfur)	to				
"%,*" for the wild card.		P(Phosphorus)	to					
SDBS No.:		Si(Silicon)	to		129.3,18.4,			
"%,*" for the wild card.		Numbers bety	ween left and righ	ht columns.	No shift regions:			
						Range defined by two numbers separated by a space, eg. 110 78,		
						¹ H NMR Shift(ppm): Allowance		
						± 0.2		
						No shift regions:		
						MS Peaks and intensities:		
						Mass and its intensity are a set of data separated by a space, eg. 110 22,		
Search	Clear Hit: 20hit 🗸	Sort by: Molecular	Weight 🗸 Asc	ending Order	 Result Dis 	play type: 🗆 with Structures		

http://sdbs.riodb.aist.go.jp/sdbs/cgi-bin/cre_search.cgi