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Abstract. The formation energies of vacancies in Li, Na and K have been calculated 
as functions of temperature using pair potentials determined from first principles. Included 
in the calculation is a term describing the change in entropy upon formation of the 
defect. This term is of critical importance in obtaining the right temperature dependence. 
When combined with earlier calculations of migration energies, the results agree very 
precisely with the measured self-diffusion energies, giving strong support to the single- 
defect mechanism for diffusion. On the other hand the calculated formation energies 
do not agree particularly well with the published measurements, leading to the suggestion 
that a re-interpretation of these experimental results would be useful. 

1. Introduction 

Conceptually, vacancy formation is one of the simplest defect processes to visualise 
in a crystal; an atom is simply removed from some position within the bulk of 
the crystal and transferred to the surface and the system relaxes under the influence 
of the interionic forces. The formation energy is then the difference between the 
energies of the perfect and defect crystals. Unfortunately, in metals, even the zero 
temperature or static calculation of this quantity turns out to be surprisingly complex. 
This is because of the participation of the conduction electrons in the formation 
process. Recognising this fact, the earliest calculations pioneered by Huntington and 
Seitz (1942) (also Huntington 1942) focused on the change in electronic wavefunctions 
near a vacancy. More recently, using the same philosophy, Fumi (1955) adopted 
a jellium approach, later extensions of which have led ultimately to proper self-consis- 
tent treatments of the jellium model such as those of Manninen et al (1975) and 
Robinson and de Chatel (1975). We refer the reader to the review by Evans (1976) 
for a detailed analysis of this approach which, although it contains some of the 
essential features of vacancy formation in metals, does not seem capable of yielding 
quantitative results. 

A second approach to the vacancy formation energy was suggested by Harrison 
(1966) using pseudopotential theory. Treating the pseudopotential as a perturbation 
and writing the total energy of the nonvibrating lattice Eo to second order in the 
perturbation, one obtains Eo in the form 
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where E,@) is a function only of the volume Q of the system and V ( ~ Y ~  - v I  1, Q) 
is an effective pair potential describing the interaction between two ions at positions 
rl and I ' ~ .  These positions need not be lattice sites. An important point is the fact 
that the pair potential is a function of the volume. This comes about because the 
conduction electron screening of the bare ion-ion interaction which gives rise to 
V(r,  Q) is a function of the electron density. Now one can in principle determine 
the vacancy formation energy AE using equation (1.1) simply by evaluating it for 
the perfect crystal and for the defect crystal and taking the difference between these 
two results. Unfortunately this procedure is not completely straightforward for a 
number of reasons. One is that the pair potentials are very long-ranged and truncation 
of them at short distance can lead to serious errors. A second is that, upon formation 
of the vacancy, the volume of the system changes and one must include in the calcula- 
tion the change in E,(Q) which is usually not known with sufficient precision for 
quantitative calculations. Finally a third and potentially more serious problem arises 
when one realises that the removal of an ion plus associated charge cloud from 
a lattice site, in general, leaves a vacancy with a local depletion of charge. Keeping 
in mind that V ( r , Q )  is really a function of the density of the electrons that are 
screening the ions. this implies that, in the immediate neighbourhood of the vacancy, 
V(r ,  Q) is altered in some manner which is not all clear. This problem is particularly 
serious in polyvalent metals but in fact may not be significant in monovalent metals. 
This is because the changes in electron density in the neighbourhood of a vacancy 
will be much less for a monovalent metal than for a polyvalent metal, resulting 
in much smaller values of ' J n ( r ) ,  where n(r)  is the density. If these gradients of n(r)  
can be described by linear response theory, then they are automatically taken into 
account by the dielectric function that screens the bare-ion pseudopotential (Geldart 
et a1 1972). Consistent with the conclusions of Evans and Finnis (1976) we shall 
assume this to be the case in the alkali metals and ignore the possibility that the 
pair potential should be altered in the vicinity of the vacancy. 

The long-range parts of the pair potentials can be handled by suitably damping 
them (Duesbery, Jacucci and Taylor 1979) (DJT) and this particular aspect of simple 
metal potentials does not pose any serious difficulty once it is recognised. 

To deal with the problems associated with E,(Q) one can take advantage of the 
idea introduced by Chang and Falicov (1971) to evaluate the vacancy properties 
at constant volume. The desired constant pressure defect formation (or migration) 
parameters are then deduced with the help of the thermodynamic equilibrium condi- 
tion on the free energy. It is easily shown (see Appendix A) that the formation Gibbs 
free energy at constant pressure AGp is equal to the Helmoltz free energy difference 
at constant volume AFL,. In zero temperature calculations this relation reduces to 
the equation of the formation enthalpy at constant pressure AHp and the formation 
energy at constant volume AEt. The great advantage of the constant volume calcula- 
tion over a constant pressure calculation is that E , ( Q )  substracts out of the problem. 
In fact it is not difficult to show that the static component of the formation energy 
is given by 

a formula which does not contain E,@). The first term is the usual sum over the 
pair potential and the second, or virial, term arises from the squeezing of the lattice 
in order to maintain constant R. 
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Although the idea of performing constant-volume calculations has been available 
for many years, the way in which it has been implemented so far, i.e. AHp = AE", 
neglects the anharmonic properties of the lattice vibrations and limits its validity 
to strictly harmonic lattices, for which the vibration frequencies are independent of 
the volume. If the thermal expansion of the lattice is considered, as is done in quasi- 
harmonic calculations, then it is not valid for finite temperature because this pro- 
cedure neglects the fact that the entropy is also a function of the lattice spacing. 
However, the validity of the method is easily extended to finite temperature by cor- 
rectly applying the equilibrium condition to the Gibbs free energy of the vibrating 
lattice. As is explicitly shown in Appendix A, one obtains for the formation enthalpy 
at constant pressure A H p  the following relationship to the formation energy at con- 
stant volume A&: 

A H p  = AEc + T ( A S p  - AS,.) (1.3) 

where ASp and ASu are the defect formation entropies at constant pressure and volume 
respectively. AHp is the interesting quantity because it corresponds to the slope of 
the Arrhenius plot of the density of defects. At atmospheric pressure AHp reduces 
essentially to AEp (the formation energy at constant pressure), since the difference 
pAQ is negligible. 

On very general grounds one expects the defect formation energy to increase 
with increasing temperature (Seeger and Mehrer 1969). However, quasiharmonic cal- 
culations of this quantity as a function of temperature (e.g. see Popovic et a /  1974) 
invariably display the opposite behaviour. This is because of the omission of the 
entropy term in equation (1.3), which as we shall see later in this article plays a 
very important role. The relevance of this entropy term was clearly demonstrated 
fifteen years ago by Nardelli and Terzi (1964) in a milestone paper on the vacancy 
formation entropy in rare gas solids, a paper that has unfortunately not received 
enough attention from later authors. 

In this paper we present some results of calculations of fully relaxed vacancy 
formation energies in the alkali metals Li, Na and K at both low and high tempera- 
tures using the pair potential formalism. It is certainly true that this problem has 
been studied by many authors previously to us, who frequently obtained apparently 
good agreement with experiment. Nevertheless we feel that our calculation is superior 
to those preceding because of the care taken to ensure that all effects of the long-range 
character of the potentials are included and because of the inclusion of the effect 
of the entropy of formation. In addition to these considerations this calculation is 
of a first-principles nature in that the pair potentials have been derived from entirely 
theoretical considerations with no parameters, pseudopotential or otherwise, adjusted 
to fit any experimental property. These are the pair potentials of Rasolt and Taylor 
(1975) and Dagens, Rasolt and Taylor (1975) (collectively referred to as DRT). The 
DRT pseudopotentials screened by the Geldart and Taylor (1970) dielectric function 
have been used to study a wide range of physical properties ranging from electronic 
transport (Shukla and Taylor 1976, Leavens 1977) on the one hand through lattice 
dynamics (DRT, Cohen and Klein 1975, Cohen et a1 1976a, b) to properties of defects 
on the other (e.g. Schober et a1 1975, Da Fano and Jacucci 1977, Pond and Vitek 
1977), all with considerable success. It is therefore of some interest to see how well 
these potentials perform in a careful vacancy calculation. 

In 52 we discuss some of the theoretical and computational aspects of the problem. 
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Then in 93 we present our results, and compare them with experiment and another 
calculation in $44 and 5. Finally our conclusions are summarised in $6, 

2. Theoretical and computational aspects of the problem 

The starting point for a defect calculation is the interionic potential. As commented 
in the Introduction we have used for our calculation the DRT pair potentials. Briefly, 
the DRT pseudopotentials were constructed by requiring that, within first-order per- 
turbation theory, they reproduce correctly the full nonlinear charge density induce 
by an isolated ion placed in an infinite electron gas. In terms of the ionic pair 
potential, obtained by screening the pseudopotential, this has the effect of folding 
into it all contributions from multiple scattering at a single ion site beyond what 
would normally be picked up by a straightforward application of perturbation theory. 
For full details we refer the reader to the DRT papers. Similarly to DRT, we employed 
the Geldart and Taylor (1970) dielectric function, which includes correlations, to 
screen the pseudopotentials. Where appropriate, we have recalculated the pair poten- 
tials at the lattice parameter corresponding to the desired temperature and we have 
also, in the case of Na, used the corrected pseudopotential listed by Cohen et al 
(1976b). We emphasise that these pseudopotentials have been derived entirely from 
theoretical considerations and that no parameters have been fitted to experimental 
quantities. 

One unfortunate characteristic of pair potentials in simple metals is the fact that 
they exhibit the well known Friedel long-range oscillations, and the summation of 
the effects of these to convergence is by no means a trivial task. For an unrelaxed 
vacancy where all ions are taken to be at lattice sites, the Ewald sum technique 
is applicable and the sums evaluated by Duesbery and Taylor (1977) can be used 
to calculate AE". However, for the relaxed system a different technique such as that 
of (DJT) is necessary. There it is shown that the pair potential V(r,  Q) can be replaced 
by a damped effective potential &(r,i2) without significant loss of accuracy. As 
shown by DJT, serious errors can result in the truncation of V(r,R) even at very 
large distances when evaluating equation (1.2) for AE,, yet these errors can be elimin- 
ated by using Veff(r,i2). For the Li and K calculations in this paper we have used 
equation (2.10) of DJT for Veff(r, Q) with the damping parameter a = 0.23. For the 
Na calculation, because of the well known r - 5  asymptotic behaviour of V(r, i2) (e.g. 
see equation (2.2) of DJT), we have used the appropriately modified form of equation 
(2.10) of DJT with r = 0.35. 

To calculate the relaxation energy we have used a cubic box, originally of side 
4a, containing 127 particles (one has been removed to form the vacancy) and then 
squeezed to keep the volume per particle constant. Veff(r,i2) was truncated at 
r = 3.92a. First, the static unrelaxed energy of this 127 particle system was calculated. 
Then the system was allowed to relax using the procedure described in Appendix 
2 and the energy recalculated. The difference between these two energies was taken 
to be the relaxation energy, it being argued that the errors introduced both by trunca- 
tion of Veff(r,i2) and by failure to include the effects of neighbouring boxes subtract 
out of the problem. The relaxation energy, which is of course negative, was then 
added to the unrelaxed formation energy, summed to convergence, to give AE,. 

Analogous considerations hold for the calculation of AP", the change in pressure 
upon formation of the vacancy at constant volume. The equation for the pressure, 
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derived from the virial theorem, is very similar to equation (1.2), i.e. 

where Ro is one atomic volume. Pe(i2) is the volume-dependent pressure arising from 
the electron gas and cancels out exactly when evaluating AP". 

Some considerations are in order at this point on static calculations and the 
quasiharmonic approximation. In general, the energy and virial sums in equations 
(1.2) and (2.1) should of course have appeared in brackets denoting statistical thermal 
averages. The static evaluation replaces these averages by the value of the sums 
corresponding to the configuration of minimum internal energy (and adds 3Nk,T  
to the energy sums). This procedure is justified in the limit of harmonic lattice vib- 
rations? (for a given value of the lattice parameter), but is certainly unsatisfactory 
above the Debye temperature OD of the solid. For instance the value of P is observed 
to be strongly T-dependent at high temperatures in dynamical studies where thermal 
averages of the virial sum are evaluated along an isocore. Fortunately there is a 
large cancellation of anharmonic effects when taking differences of perfect and defect 
solids. The true anharmonic effects that remain are the ones really connected with 
the defect, and no doubt their neglect causes a certain error in A€" and AP" at 
high temperatures. Unfortunately their relative importance cannot be evaluated within 
the quasiharmonic approximation, and the validity of the static treatment above 
OD still rests on the accord of its predictions with the actual thermal averages. This 
is a delicate point of static calculations in general, and deserves further attention. 

Another way of looking at it is to point out that, by replacing the thermal average 
of the sums with their values for the static configuration, one neglects the vibrational 
contribution in equation (2.1). Now of course this can be approximated by a term 
containing the Gruneisen constant, but there is little point in doing this because 
we do not know how this quantity changes when a defect is created. 

Finally we note (Appendix 1) that the calculation of the entropy term in A H ,  
and the formation volume requires knowledge of the lattice expansivity U, and the 
isothermal compressibility K,. These obviously cannot be computed without taking 
explicitly into account the electronic energy and pressure, because their values depend 
precisely upon the equilibrium between.these terms and the corresponding ionic struc- 
ture terms. We choose to take the values of LY, and K T  from experiment. Of course 
U ,  is implicitly introduced in the aforementioned harmonic calculation anyway 
through the experimental temperature-dependent equilibrium lattice spacing. The 
explicit introduction of U, in computing AH, simply ensures that the volume depen- 
dence of the formation entropy is consistent with that of the internal energy. 

t To be precise. the quasiharmonic approximation E' to the internal energy E of a system of interacting 
particles about a potential energy minimum consists of the (volume-dependent) potential energy E o  of 
the configuration corresponding to the bottom R o  of the potential well plus a (volume-dependent) vibra- 
tional energy EH. that can be expressed in terms of the eigenfrequencies at R , .  At temperatures larger 
than the Debye temperature E , ,  tends to 3Nk"T and can be dropped in performing energy differences. 
As a matter of fact AE,, has been found to be negligible in comparison with AEo in defect calculations 
(Gilder and Audit 1977). A clear discussion of the quasiharmonic approximation is found in an excellent 
book on point defects and diffusion (Flynn 1972). The significance of the entropy term of equation (1.3) 
is also discussed therein. 

Y.P.IF1. 9 8-R 
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3. Results 

In table 1 we present our results for the formation energies of vacancies in Li, Na 
and K. To calculate the unrelaxed constant volume formation energy AE," from equa- 
tion (1.2) we performed the infinite sum by using Veff(r) summed to convergence. 
We would of course obtain the same answer using qr) but with enormous expenditure 
of effort. We also calculated AE," in a different way using the symbol A& to denote 
the result. We removed one particle from the 128 contained in the box of side 4u 
and compressed the box to give the same volume per particle as for the perfect lattice. 
Using Ve,,(r), truncated at r = 3.921, we evaluated the energy per particle of this 
new system. This then enabled us to obtain our desired result, A Q  = 127(ed - E') 

where eo is the energy per particle of the perfect lattice. The results displayed in 
table 1 show that AE; and AC agree within a percent or two for all three materials. 
The small differences between these two quantities have their origin in the implicit 
assumption of Born-von Karman cyclic boundary conditions when evaluating A Q .  
This gives rise to an interaction between the vacancy and its images, a spurious 
effect which is of the order of N - '  where N is the number of particles in the box. 
The good agreement between AE: and A f i  provides a good check on our procedures 
as well as illustrating a practical use of Ve,f(r). 

The relaxation energy AE;, calculated in the manner described in the previous 
section, will also have an N - '  correction which might be relatively larger than for 
A&. However, as the results of table 1 show, AE; is 15% of AE; and hence such 
corrections are not important. However, in the case of interstitials with much larger 
relaxations the situation could be different. 

For each material. results are presented for AEv = AE," + AE;, at two different 
lattice parameters, one corresponding to low temperature and the other to the melting 
point. In each case AEL decreases sharply with increasing lattice parameter. However, 
to make a comparison with experiment we must add to U, the entropy term A 
to give the formation enthalpy at constant pressure AH,,. These results are also given 

Table 1. Vacancy formation energies (in electron volts) at constant volume for Li, Na 
and K plus experimental values for the lattice parameter a, thermal expansion coefficient 
r p  and compressibility K T .  A€" and A Q  are the static unrelaxed values obtained, respect- 
ively, by summing equation (1.2) over the infinite lattice and by evaluating the energy 
per particle of an array of boxes, each originally of side 4a but with one particle removed 
and the box dimensions squeezed to maintain the condition of constant volume. AE; 
is the relaxation energy of the squeezed lattice. AE" = AE: + AEL,. The formation enthalpy 
at constant pressure AHp = AEu + A where A = - Tr,RAp,. The formation volume 
AQp is obtained from equation (A1.7). 

Li 0 3,483 0,526 0,519 0.081 0,445 0 0,445 0.43 0.73'' 
Li 454 3.538 0.456 0.451 0.058 0.398 0.087 0.485 0.68 1.96b 0.95" 
Na 0 4.225 0292 0,293 0,040 0,252 0 0.252 0 6 5  1.27' 
Na 371 4,309 0,213 0.218 0.025 0,188 0.108 0.295 0.72 2.27' 1,73d 
K 0 5,233 0,340 0,343 0,050 0,290 0 0,290 0.59 2.70' 
K 337 5,343 0,257 0.259 0.030 0.227 0.085 0.312 0.71 2.55' 3.34' 

I' Extrapolated from Nash and Smith (1959) and thermodynamic data quoted therein; 
(1976): ' Extrapolated from Martinson (1969); 
and Swensson (1974). 

Beg and Nielsen 
Fritsch er al (1973); e Adlhart et al (1975); ' Schouten 
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in table 1. It is most interesting to note that this additional term completely cancels 
the behaviour of AEL with lattice parameter. The net result is a much weaker variation 
of AH,. For Li and K the change in AHp, as T goes from 0 to T,,, is less than 
10'4, although for Na it is a little larger, Most important, the change is positive 
as it should be. These findings seem to be more or less in accord with those of 
Leung and Stott (1977) who, using a different approach, concluded that vacancy 
formation energies in Na and A1 are independent of temperature. 

Finally we display in table 1 our calculated values of the formation volumes 
at constant pressure AR,. For Na and K these quantities are very similar, being - 0.6 to 0.7 R,, where R, is the atomic volume, and they exhibit only a small variation 
with temperature. On the other hand AR, is somewhat smaller at T = 0 for Li 
(0.43Ro), and increases by more than 50"; to about the same value as for Na and 
K at T = T",. 

4. Comparison with experiment 

4.1. Vacancj  formotion energ!. 

Experimental values of the vacancy activation energy Q obtained in self-diffusion 
experiments are very accurate for Li (Ott and Lodding 1968), Na (Mundy 1971) 
and K (Mundy er a /  1971). They are actually sufficiently accurate that the curvatures 
of respective Arrhenius plots have been well established for Na and K (and excluded 
for Li). 

Formation energy measurements are generally much less precise and reproducible. 
Different methods, such as resistivity, specific heat and lattice spacings against volume 
expansion, do not agree as well as activation data determined from self-diffusion, 
creep or electromigration and thermal transport of defects. 

Furthermore. the available formation energy data seem unsatisfactory in other 
respects. They do not correlate with the melting temperature of the metal, as Q 
does; when combined with Q they indicate a proportion of the formation and migra- 
tion contribution to Q that varies considerably in the three alkali metals, as shown 
in table 2, and that is difficult to merge with other experimental results, like the 
heat of transport of the Soret effect for Na (Sullivan 1967). 

Table 2. Experimental Lalues of the vacancy activation energy Q and formation energy 
A€. Energies are in electron volts. For each metal T,, is the melting temperature. The 
values listed in the columns without temperature headings are, in the case of Q, for 
an intermediate temperature and. in the case of EF. an average value over the measured 
temperature range. 

Li Y ;1 K 

" Ott and Lodding (1968); hThernquist and Lodding (1968); Mundy (1971); 
(1967): ' Mundy et <I/ 11971): ' Kohler and Ruoff (1967); 
(1975); ' MacDonald (1953). 

Sullivan 
Feder (1970); hAdlhart et a /  
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The difficulty in correlating formation energies with the respective activation 
values and with the existing theoretical evaluation of the parameters of monovacancy 
diffusion has favoured interpretations of the experimental results that rely upon two 
or more defect types. This trend, strongly supported by the curvature exhibited by 
the Arrhenius plot of various metals (e.g. Na and K), has profited from the fact 
that calculations of formation and migration entropies are difficult and rare. This 
fact leaves a certain amount of freedom to postulate nonvanishing relative contribu- 
tions of different defect types. 

On the other hand, a glance at table 3 shows that the present results for the 
vacancy formation enthalpies (AH,) of the three alkali metals correlate quite well 
with the activation energies. Taking the difference between these two quantities in 
each case yields our expected vacancy migration energy (AE,) if only monovacancies 
contribute to the diffusion process. Note that these values, given in the third row 
of table 3, are rather similar for each element. Also note that they agree very well 
with the vacancy migration energies (AET) calculated by Schober et al (1975) for 
Li and by Da Fano and Jacucci (1977) for Na and K using the same interionic 
potentials. These are shown in the fourth row of table 3. 

Table 3. Comparison of vacancy migration energies A€,,,$ expected from the difference 
of the measured activation energies Q and the computed formation energies A€", with 
the values (A€:) reported in the dynamical simulation study of the same model system 
by Da Fano and Jacucci (1977) for Na  and K and for Li by Schober et a /  (1974) 

Li Na K 

T 0 T, 0 T", 0 T", 
Q 0.55 0.55 0.37 0.45 0.38 042  
A€r 0.44 0.48 0.25 0.29 0.29 0.31 
AE,, 0.11 0.07 0.12 0.16 0.09 0.11 
A€:, 0.11 0.12 0.18 0.09 0.12 

Dynamical simulation studies of the monovacancy migration were carried out 
by Da Fano and Jacucci (1977) in Na and K, using the molecular dynamics technique. 
Migration energies were obtained from jump frequencies and particle diffusion rates 
in runs corresponding to different temperatures in the range TIT, = (09-1*0), each 
including about 500 vacancy jumps. Different jump processes were observed to occur 
in their study: 

(i) single jumps of the vacancy to a nearest neighbour site; 
(ii) collinear double jumps of the vacancy; 
(iii) single jumps of the vacancy to a second nearest neighbour. 

The second and third mechanisms do not operate at T = 0.9 T,,; they exhibit 
a migration energy about four times larger than single nearest neighbour jumps. 
At T = T, the double jumps contribute more than one-fourth of the vacancy displace- 
ments in Na and about one-sixth in K, while second-nearest-neighbour jumps contrib- 
ute about 4% and 1% respectively. The values indicated in table 3 for T = 0 corre- 
spond to the migration energy exhibited (at high temperature) by the contribution 
to the diffusion coefficient of the single nearest-neighbour jumps taken separately, 
while at T = T,, the values correspond to the total diffusion process. 
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No dynamical simulations of diffusion have been carried out for Li. However, 
Schober et al (1975) performed a static calculation using the same DRT potential 
as employed in this work and we have included their value of AE; in table 3 as 
an indication of what a dynamical simulation can reasonably be expected to produce. 

The extremely good, detailed agreement exhibited by the last two rows of table 3 
leaves no room, in our opinion, for the contribution of a second defect type to 
diffusion in these metals. Note that Da Fano and Jacucci (1977) show that the mono- 
vacancy double jumps explain the anomalous decrease of the isotope effect found 
by Mundy in Na in the temperature range TIT, = (0.9-1.0), i.e. the strongest evidence 
for the contribution of more than one diffusion channel in Na. 

The values of the formation energies calculated in the present work are not in 
agreement with the experimental values of table 2, and this remains an unsolved 
problem for the time being. It is perhaps appropriate to note here that the theoretical 
treatment employed to extract formation energies from dilatometric experiments is 
based on a theorem (Feder and Nowick 1958) arising from the work of Eshelby 
(1954) proven in the harmonic approximation only. It is then assumed that the effect 
of anharmonicity on the vacancy and lattice expansion is exactly the same in both 
cases, an assumption which in our opinion warrants further investigation. 

Preliminary calculations on interstitial atoms and divacancies performed along the 
lines of the present work predict for Na a formation energy of the interstitial greater 
than half an electron volt and a negligible divacancy binding energy. Although these 
results indicate already that these types of defects should play a very minor role 
in self-diffusion and defect concentration measurements, accurate calculations of de- 
fect entropies would be very important to settle the matter in a definitive way. 

4.2. Vacancy formation colunie 

In table 4 the calculated values ARp of the vacancy formation volume are compared 
to the experimental values of the activation volumes AR,. The values for Na are 
obtained from Mundy's pressure experiment, interpreting the data with a single-defect 
type model. The value for K is reported in room temperature creep work (Kohler 
and Ruoff 1967) in which the activation energy for diffusion was found to be 0.42 eV, 
in good agreement with that found later in the self-diffusion experiment by Mundy. 
For all three materials, ARp is somewhat larger than ACl,,. In view of the results 
obtained by Finnis and Sachdev (1976) we cannot reasonably expect much better 
agreement with experiment. 

Note that, through equation (A.6), the entropic term in AHp (A in table 1) is 
proportional to ARp. Thus it might be argued that we have overestimated this term 

Table 4. Comparison of the computed vacancy formation volumes AOp with measured 
activation volumes AQ,. 

Li Na K 

7 0 7, 0 7, 0 7, 
AQ,/Qo 0.43 0.68 0.65 0.72 0.59 0.71 
AO,,/Ro 0.28" 0.4Xh 0.54b 0,5jL 

,'Hultsch and Barnes (1962); hdeduced from data of Mundy (1971) assuming a single 
defect mechanism: Kohler and Ruoff (1967). 
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by, say, 30y0 at T = Tn,. This would mean that our calculated values of AHp at 
T = T,, should be lowered by about 0.02 eV in each case, reducing the temperature 
dependence of this quantity and slightly improving the already very good agreement 
between the last two rows of table 3. 

5. Comparison with another calculation 

There are three features of our lattice statics calculation which make it superior 
to previous work. First of all we have correctly summed to convergence the long- 
range part of the interionic potential for the relaxed vacancy. A short-range cut-off 
can bring about serious errors when evaluating the energy in the squeezed lattice 
since this procedure is equivalent to evaluating the virial sums of equation (1.2) 
over the relaxed positions. Judicious selection of a truncation point can bring about 
sensible looking answers, but not necessarily ones in which confidence can be placed. 
Secondly the relaxed configurations are obtained with a computational method 
appropriate to a disordered system. Anharmonic effects in the relaxation process 
from the perfect lattice positions are taken into account automatically. Finally the 
pseudopotential description is of a completely fundamental nature with no adjustable 
parameters determined by experimental constraints. Also we have employed what 
we believe to be the best choice of dielectric function for this problem?. 

Table 5. A comparison of our  calculated formation energies AE(JT) and volumes An 
(this work: JT) with those of Ho, AE(Ho). AQ(Ho) and with experimental quantities. 
All energies are in electron volts. 

~ 

Li Na K 

TJK) 454 371 31 
Q L V  0.55-0.55 0.37-0.45 0.38-0.42 
AE(HoJ 0.37 0.39(0.27) 0.36 
AE(JT) 0,440.48 0,25-0,29 0.29-0.3 1 

(ACR.!Roj(HoJ 0.53 0.54(0,71) 0.53 
(An:Qo)(exp) 0,28 0'48-0'54 0.55 

(AQ.'Q,j(JTj 0'43-0'68 0'65-0'72 0.59-0.71 

In addition to these comments on the lattice statics calculation, we point out 
that the entropy of formation has also been included and this allows us to extend 
our results to finite temperature. Because we feel that all these improvements are 
necessary to obtain a consistent picture of vacancy formation, we should compare 
with earlier calculations. A comprehensive review of earlier work is out of the question 
here and consequently we have chosen to make a comparison with one particular 
set of results which is fairly typical of earlier work, i.e. that of Ho (1971, 1973). 
In table 5 we compare our calculated formation energies and volumes with those 
of Ho along with some relevant experimental quantities. The most striking difference 
between the two calculations is that Ho's results are almost identical for the three 
metals, exhibiting no correlation either with the melting temperatures and measured 
self-diffusion energies in the case of AE or with the measured formation volumes 
in the case of AQ. On the other hand our results show this correlation explicitly 

+See Dharma-Wardana (1976) for a useful analysis of dielectric functions. 
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as well as the correct temperature dependence of the energies. We note that Ho's 
Na vacancy energy drops to a value in agreement with ours when the same screening 
(Geldart and Taylor 1970) is used. But the vastly different behaviour of the calculated 
Li results relative to Na and K almost certainly arises from the fact that Ho used 
only local pseudopotentials for his calculations whilst the DRT pseudopotentials are 
explicitly nonlocal, nonlocality being a very important feature of a good description 
of Li. 

6. Conclusions 

The present calculations of the vacancy formation energy in Li, Na and K, comple- 
mented by the vacancy migration study of Da Fano and Jacucci (1977) in Na and 
K yield an accurate and overall consistent picture of the properties of this point 
defect in these alkali metals. Extremely good agreement is found with the accurate 
measurements of the temperature-dependent activation energy for self-diffusion; the 
experimental and computed energies and the respective temperature dependences cor- 
relate with great precision and show the same variations from one element to another. 
On the other hand the computed formation energies do not agree particularly well 
with the measured values. This leads us to conclude that, either a fortuitous cancella- 
tion of errors has occurred between the Da Fano and Jacucci (1977) calculations 
and our results, or the experiments measuring formation energies need further inter- 
pretation. Keeping in mind that both the migration and formation energy calculations 
have used the same input data and that there were no adjustable parameters in 
either case, the first possibility seems rather unlikely. We therefore suggest that the 
question of the effect of anharmonicity on the interpretation of dilatation experiments 
should be re-examined nith some care. 

Accepting the good agreement with self-diffusion data, four conclusions follow 
naturally from these findings : 

(i) there is no room for the contribution of a second defect type to the experimental 
results; 

(ii) the DRT pair potentials give very accurate results for the alkali metals and 
three-body effects appear to be very small; 

(iii) the dynamical anharmonic effects (other than the ones included in the quasi- 
harmonic description) are small even close to the melting point; 

(iv) the explicit inclusion of the entropy increase, upon volume expansion, in 
forming the defect, is essential to obtain the correct values of formation energies 
at finite temperatures. 

From our results it is clear that the curvature of Arrhenius plots of Na and 
K, and probably many others, can be ascribed to the temperature dependence of 
formation and migration parameters for a single defect mechanism, i.e. 
- I?D( T)/d( l /k ,T)  = Q( T ) .  This point of view has been repeatedly set forward, though 
never in a conclusive way because of the lack of accurate and reliable calculations 
of the T dependence of the parameters. Recently Gilder and Lazarus (1975) have 
espoused the same viewpoint but have suggested that the T dependence of Q is 
related to the T dependence of the vacancy formation volume. In particular they 
predict a strong curvature for those metals where the defect exhibits an expansivity 
much higher than the crystal itself. Unfortunately our model calculation does not 
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show this correlation. It is not clear why this should be so and this is a question 
that should be resolved in the near future. 
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Appendix 1 

This Appendix is dedicated to the derivation of an expression for the vacancy forma- 
tion enthalpy that is particularly suited for use in a quasiharmonic approximation 
scheme for metallic model systems based on the pseudopotential description. The 
expression is equally valid for migration enthalpy. 

We start by recalling the well known equality of constant-pressure defect Gibbs 
free energy and constant-volume Helmholtz free energy. The defect affects the lattice 
properties to order l,", i.e. to the order of its concentration in the crystal, so we 
can consider linear terms in Taylor expansions. Let us focus on an isothermal vari- 
ation of the Gibbs free energy of a crystal in thermodynamic equilibrium conditions. 
Since at equilibrium (ZGiaQ), = 0 and (dG/BP), = Q, the differential of G at constant 
T is 

dG = QdP.  ( A l . l )  

If we now use this result to relate Gibbs free energies of formation at constant 
pressure and constant volume, we have 

(A1.2) 

if A P  is the pressure increase in forming the defect at constant volume. On the 
other hand. the relation G = F + PR gives 

(A1.3) 

AC, = AG, + QAP 

AG, = A F ,  + RAP 

From equations (A1.2) and (A1.3) we get the important result 

AG, = AFL (A1.4) 

which can be explicitly written as 

AU, - TAS, + PAQ, = AU, - TAS,. 

Note that AR, is the formation volume at constant pressure and that 
h n , ; Q o  = 1 + hnr/lQO where hnr is the relaxation volume (usually negative). The 
formation enthalpy at constant pressure is then; 

(A1.5) 

The last term in equation (A1.5) is determined by the entropy increase upon expansion 
by AQ,, of the lattice containing the defect. It can be evaluated as T(dS/Xl),At2, 

AH, = AU, + PAQ, = AU, + T(AS, - AS"). 
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using the perfect crystal values of the thermodynamic derivative. 

where r p  is the lattice expansivity and K ,  the isothermal compressibility. We shall 
then rewrite equation (A1.5) as 

(A1.6) 

In a constant-volume calculation of the formation parameters, AQp can be evaluated 
through the pressure increase APu upon formation of the defect at constant volume, 
making use of the compressibility of the crystal : 

An, = -QKTAPv. (A1.7) 

AH, = AU, + T(r,;KT)AQ,. 

Substituting in equation (A1.6) we find 

AH, = AU, - Tr,QAP,. (A1.8) 

In the quasiharmonic static approximation, the pressure is evaluated as 

Upon taking constant volume difference, the first term in this expression cancels 
out exactly and the quantities AUc and AP" are then easily evaluated in a static 
calculation from energy sums and virial sums of ionic pair interactions relative to 
the defect and perfect crystals having identical lattice parameters. The temperature 
dependence then enters the expression in equation (A1.8) through the variation with 
temperature of the lattice spacing and of its temperature derivative. It turns out 
that the two terms on the right-hand side of equation (A1.8) have an opposite tem- 
perature variation that largely compensates in their algebraic sum AH,. Since the 
second term overcomes the first, neglecting it results in the prediction of the wrong 
sign for the temperature dependence of AHp. 

Appendix 2 

The relaxation energies quoted in connection with the vacancy formation and migra- 
tion are obtained from computations in which the structure of the system is allowed 
to relax at constant volume to the configuration of energy minimum. The search 
for the energy minimum is done in a standard way with the help of a modified 
molecular dynamics program. At every integration time step all particle velocity com- 
ponents having opposite sign with respect to the relative component of the resultant 
force on the particle are equated to zero. 

In this way the system is allowed to evolve downhill in potential energy under 
the effect of the interaction forces. The kinetic energy that thus develops is extracted 
from the various degrees of freedom when the respective coordinate overshoots the 
bottom of the valley and starts climbing uphill again. This method is rather efficient 
and perfectly adequate for this purpose. 

The system evolves in our case for some one or two hundred steps. The total 
internal energies rapidly stabilise in the seventh or eighth figure and coincide within 
this accuracy with the total energy-the effect to be read off is of the order of 1/N, 
so that this precision is more than adequate with a few hundred particles. 
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Note Added in Proof. Our attention has been drahn to a paper by A V Chadwick and H R Glyde in 
R u e  Gus Solids, volume I1 edited by M L Klein and J A Venables (Academic Press 1977), page 1151. 
These authors have also stressed the importance of anharmonic effects in the temperature-dependent 
vacancy formation enthalpy and have derived independently our equation (A1.6). See their equation (2.36). 
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