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Outline
• Introduction
• 2c2e model of chemical bond
• 3c4e model of hypervalent and secondary bonding
• 4c4e dimer model of dispersion force, solvatochromism
• onsite 2c2e model for Hund’s rule and orbital relaxation
• onsite 3c3e model of atomic levels
• 4c4e tetrahedral model of metals and static correlations
• 4c4e ring model of density waves
• 1D extended Hubbard model
• 1D Peierls model (SSH model)
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Goals

The goal of this lecture is to demonstrate key concepts of quantum
chemistry using the simplest possible models
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Considered models

• One-electron models – well covered elsewhere

• Electron-electron interaction models – in focus

• Electron-phonon models – in brief
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Considered electron-electron models

H =
L∑

i ,k=1

↑↓∑
σ

c+iσH
1e
ik ckσ +

1

2

L∑
i ,j ,k,l=1

↑↓∑
στ

c+iσc+jτWikjlclτckσ

• Onsite models
I LoNe model – N electrons on L orbitals
I All Wikjl are large but linearly dependent due to symmetry
I Any molecule in MO basis

• One orbital per site models
I LcNe model – N electrons on L centers
I Most of Wikjl are small enough to be neglected
I Include infinite systems =⇒ quantum phase transitions

• Semiempirical Hamiltonians
I PM7 in MOPAC program
I Well parameterized for real molecules and solids
I Perfect for self-training
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Onsite models
H =

L∑
i=1

εini +
1

2

L∑
i ,j ,k,l=1

↑↓∑
στ

c+iσc+jτWikjlclτckσ

Parameters (below i 6= j 6= k 6= l , “site”=basis set orbital):

• εi = H1e
ii – orbital energy per shell (s, p, d ;σ, δ; eg , t2u)

• onsite Coulomb repulsion Ui = Wiiii

• intersite repulsion Vij = Wiijj =
∫∫ |ϕi (x)|2 · |ϕj (y)|2

|x−y | dx dy

• exchange Xij = Wijij ≡Wijji =
∫∫ ϕi (x)ϕj (x) · ϕi (y)ϕj (y)

|x−y | dx dy

• three- and two-center integrals with single intersite overlap

vikj = Wijkk =
∫∫ ϕi (x)ϕj (x) · |ϕk (y)|2

|x−y | dx dy

• three-center exchange integral

xikj = Wikkj =
∫∫ ϕi (x)ϕk (x) · ϕj (y)ϕk (y)

|x−y | dx dy

• four-center integrals wikjl =
∫∫ ϕi (x)ϕk (x) · ϕj (y)ϕl (y)

|x−y | dx dy
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Onsite models: symmetry considerations

Spherical symmetry:

• Single set of l-orbitals – l + 1 parameters

• For example, p-orbitals: U, V , X = U−V
2

• d-orbitals: 18 different matrix elements but only 3 parameters

• sp-orbitals: Uss , Upp, Vsp, Vpp, Xsp, Xpp =
Upp−Vpp

2

Rotational symmetry:

• Doubly degenerate orbitals with X = U−V
2
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One orbital per site models
Extended Hubbard model:

H =
∑
i

εini+
∑
i<j

tijTij+
∑
i

Uin
↑
i n↓i +

∑
i<j

Vijninj+
∑
i<j

Xij

(
T↑ijT

↓
ij −

∑
σ

nσi nσj

)

where nσi = c+iσciσ, ni = n↑i + n↓i , Tσij = c+iσcjσ + c+jσciσ

Parameters (below i 6= j):
• εi = H1e

ii – onsite energy
• tij = H1e

ij – transfer integral
• Ui = Wiiii – onsite repulsion (Hubbard model)
• Vij = Wiijj – intersite repulsion (extended Hubbard model)
• Xij = Wijij – exchange integral (uncommon extension)

In most cases V cannot be neglected.
X is small but sometimes important:

−1

2

∑
i<j

Xijninj − 2
∑
i<j

Xijsisj +
1

2

∑
i 6=j

∑
σ 6=τ

Xijc
+
iσc+iτcjτcjσ
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Where are electronic correlations?

Matrix elements of 1e and 2e density matrices:

ρσki = 〈Ψ|c+iσckσ|Ψ〉, ρστkilj = 〈Ψ|c+iσc+jτclτckσ|Ψ〉

For Slater determinant

ρστkilj = ρσkiρ
τ
lj − δστρσkjρσli

Simplest correlation function (zero for a single Slater determinant)

Cστij =
〈
nσi nτj

〉
− ρσiiρτjj + δστ (ρσij )

2

Correlation energy
1

2

∑
ijkl

∑
στ

Wikjl δρ
στ
kilj

Even if δρ is small, Wikjl are large and there are many of them
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Methods

• Symbolic and numeric exact diagonalization with ExactDiag

package for Maple users, including explicit consideration of
spin and symmetries, support of non-abelian groups

• Exact diagonalization and DMRG with ALPS or other
programs (QuSpin, TeNPy)

• Post-HF with MOPAC

• Post-HF with Gaussian or other programs (MolPro, NWChem,
Q-Chem, Columbus)
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Questions

1. When Wikjl have spin indices and when have not?

2. Why intersite exchange integral is small?

3. How to prove that X = U−V
2 for rotational symmetry (idea

only)?

4. Why for spherical symmetry most of Wikjl are linearly
dependent (idea only)?

5. Which terms in H facilitate ferromagnetic or
antiferromagnetic ordering?

6. Why abelian symmetries are much simpler to treat in
quantum mechanics than non-abelian?
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2c2e model of chemical bond

Nonpolar H2 molecule or polar LiF molecule

• Can be explained using one-electron models
I Bonding mechanism and energy
I Why excitation breaks the bond (antibonding orbital)
I Why electron density is displaced in polar bonds

• Can be explained using electron-electron interaction models
I Why triplet excitation is lower than singlet
I What are “optical signatures” of e-e correlations
I Why DFT is inaccurate at large interatomic distances
I Why tight binding is accurate at bonding distances
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2c2e model: basis and Hamiltonian
One-electron basis consists of two orbitals ϕ1 and ϕ2 centered on
the 1st and 2nd atoms forming a chemical bond. Let s = 〈ϕ1|ϕ2〉.
The one-electron overlap and Hamiltonian

S1e =

(
1 s
s 1

)
, H1e =

(
ε01 t012
t012 ε02

)

Many-body basis for N = 2 and Sz = 0 consists of 4 functions:∣∣ 1
1

〉
,
∣∣ 1
2

〉
,
∣∣ 2
1

〉
,
∣∣ 2
2

〉
The overlap matrix for this basis is

1 s s s2

. . . 1 s2 s

. . . . . . 1 s

. . . . . . . . . 1
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Concept: Most of Wikjl can be safely neglected
(while overlaps are important)

Yes, the Hamiltonian

H =


2ε01 + U0

1 sε01 + t012 + v112 sε01 + t012 + v112 2st012 + X12

. . . ε01 + ε02 + V 0
12 2st012 + X12 sε02 + t012 + v122

. . . . . . ε01 + ε02 + V 0
12 sε02 + t012 + v122

. . . . . . . . . 2ε02 + U0
2


can be written in UV-representation (or zero differential overlap):

H =


2ε1 + U1 sε1 + t12 sε1 + t12 2st12
. . . ε1 + ε2 + V12 2st12 sε2 + t12
. . . . . . ε1 + ε2 + V12 sε2 + t12
. . . . . . . . . 2ε2 + U2


but thus renormalized parameters might deviate strongly from
initial integrals
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Matrix elements: bare vs parameterized

The experimental equilibrium distance is indicated

Primitive integrals. Not shown:
ε001 = −1/2, U0

1 = 5/8

The experimental equilibrium distance is indicated

Elements of many-body Hamil-
tonian in ZDO form
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MO basis is good for symmetric systems

In MO basis (
|20〉 |αβ〉 |βα〉 |02〉

)
Hamiltonian matrix is sparse with HF SCF energies on its diagonal

H =


E0 + ∆Y − 2|t| 0 0 Y

. . . E0 −∆Y Y 0

. . . . . . E0 −∆Y 0

. . . . . . . . . E0 + ∆Y + 2|t|


but basis functions are complex combinations of site orbitals
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2c2e model: orthogonalized symmetrized basis
(spin operator can be diagonalized by spin symmetry)

Φ1 = 20− 02 =
1√

2(1− s2)

(∣∣ 1
1

〉
−
∣∣ 2
2

〉)
Φ2 = 20 + 02 =

1√
2(1− s2)

(∣∣ 1
1

〉
+
∣∣ 2
2

〉)
− s√

2(1− s2)

(∣∣ 1
2

〉
+
∣∣ 2
1

〉)
Φ3 = αβ + βα =

1√
2(1− s2)

(∣∣ 1
2

〉
+
∣∣ 2
1

〉)
− s√

2(1− s2)

(∣∣ 1
1

〉
+
∣∣ 2
2

〉)
Φ4 = αβ − βα =

1√
2(1− s2)

(∣∣ 1
2

〉
−
∣∣ 2
1

〉)
or in coordinate representation

1√
2

(∣∣ 1
1

〉
±
∣∣ 2
2

〉)
=
ϕ1(x1)ϕ1(x2)± ϕ2(x1)ϕ2(x2)√

2

χ↑(σ1)χ↓(σ2)− χ↓(σ1)χ↑(σ2)√
2

1√
2

(∣∣ 1
2

〉
±
∣∣ 2
1

〉)
=
ϕ1(x1)ϕ2(x2)± ϕ2(x1)ϕ1(x2)√

2

χ↑(σ1)χ↓(σ2)∓ χ↓(σ1)χ↑(σ2)√
2
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... continuation

Hortho = E0 +


Y − 2s2

1−s2
U+V
2 −2∆ε s∆U 0

−2∆ε Y 2t 0
s∆U 2t −Y 0

0 0 0 −Y − 2s2

1−s2
U+V
2


where Y = U−V

2 . Now the triplet (S = 1) is separated:

Φ4 =
1√

2(1− s2)

(∣∣ 1
2

〉
−
∣∣ 2
1

〉)
This is for Sz = 0, the component of the triplet with Sz = +1 is

1√
1− s2

∣∣ 12· 〉 = αα =
1√

1− s2
ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)√

2
χ↑(σ1)χ↑(σ2)
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Concept: Triplet is usually lower than excited singlet

Yes, by writing

Ψ = sin θ cosφ Φ1 + sin θ sinφ Φ2 + cos θ Φ3

one can show that energy gap between the triplet and excited
singlet has the sign of U − V

Let’s now consider symmetric case: then the excited singlet is
given by odd function with respect to site interchange:

Φ1 =
1√

2(1− s2)

(∣∣ 1
1

〉
−
∣∣ 2
2

〉)
and the triplet – excited-singlet gap is U − V
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Three concepts about ee-correlations – #1
Singlet-triplet gap is a measure of correlations

Let’s introduce correlation factor:

1− 〈ΨRHF|Ψexact〉2

〈ΨRHF|Ψexact〉2
= tanh2 η

In terms of UV parameters

sinh 2η =
U − V

4|t|

Now

E3 − E2

E3 − E1
=

U − V
U−V

1−e−4η − s2(U+V )
1−s2

≈ 1− e−4η for small s
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Three concepts about ee-correlations – #2
At bonding & smaller distances correlations are small, at larger distances correlations grow

The experimental equilibrium distance is indicated

And vice versa: the larger the correlations the smaller the bond
strength Ebond = −2|t|e−2η

The lowest and the highest states have

Ψ ∼ e∓η
(∣∣ 1

1

〉
+
∣∣ 2
2

〉)
± e±η

(∣∣ 1
2

〉
+
∣∣ 2
1

〉)
if correlation factor η = 0 we get single Slater determinants

20 / 47



Three concepts about ee-correlations – #3
Natural orbital occupations is a measure of correlations

The one-electron density matrix of the ground state is given by

ρσ =
1

2

(
1 cosh−1 2η
. . . 1

)
The eigenvalue of this matrix corresponding to unoccupied MOs is
sinh2 η
cosh 2η and thus indeed is another measure of correlations
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Ordering of spin, optical and charge gaps

• Spin E2 − E1 = 2|t|e−2η − 2∆Y
• Optical E3 − E1 = 2|t|e+2η − 2∆Y

• Charge IP− EA = 2|t|
(
e+2η − 1 + e−2η

)
+

V 0
12−X12

1−s2 − 2∆Y

If U > V > 0 which is natural condition for chemical elements
then spin gap<optical gap<charge gap
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H2 molecule: model vs real molecule
Orbital relaxations are always important for quantitative accuracy

H+ + H+
4psu

4fsu
3ssg

3dpg

3psu

2ppu

2psu

D'' 1Πu 5pp

D' 1Πu 4pp

V 1Πu 4fp

B'' 1Σu
+ 4ps

g 3Σg
+ 3ds

B' 1Σu
+ 3ps

e 3Σu
+ 3ps

X + e− 2Σu
+

b + e− 2Σg
+

c + e− 2Σg
+

C + e− 2Σg
+

X 1Σg
+ 1ss

b 3Σu
+ 2ps

H 1Σg
+ 3ss

E,F 1Σg
+ 2ss + 2ps2

c 3Πu 2pp

C 1Πu 2pp
I 1Πg 3dp

D 1Πu 3pp (also d 3Πu 3pp and J, j 1,3∆g 3dd

a 3Σg
+ 2ss

h 3Σg
+ 3ss

m 3Σu
+ 4fs

i 3Πg 3dp

B 1Σu
+ 2ps

X 2Σg
+ 1ssg

3dsg

2ssg H+ + H(3L)

H+ + H(1s)

H+ + H− (1s2)
H(1s) + H(3L)

H(1s) + H(2L)

H(2s) + H−(1s2)

H(1s) + H(1s)
H(1s) + H−(1s2)

H(1s) + H(5L)
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−

H2
+
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H2 molecule: model vs real molecule
Orbital relaxations are always important for quantitative accuracy

H+ + H+
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Another view on orbital relaxations
AO constituting HOMO produces upshifted LUMO, whereas real LUMO has little
contribution from that AO

Residual weight of HOMO AO in other MOs calculated as
1−

∑
MO:ε(MO)<ε〈ψMO|ψAO〉2: Def2-QZVP vs. one-orbital

approximation
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Concept: Tight binding is accurate at bonding distances
If we fit exact many-body Hamiltonian

H =


2ε1 + U1 sε1 + t12 sε1 + t12 2st12
. . . ε1 + ε2 + V12 2st12 sε2 + t12
. . . . . . ε1 + ε2 + V12 sε2 + t12
. . . . . . . . . 2ε2 + U2


by tight binding model (nonorthogonal, but s is not fitted)

HTB =


2ε̃1 s ε̃1 + t̃ s ε̃1 + t̃ 2st̃
. . . ε̃1 + ε̃2 2st̃ s ε̃2 + t̃
. . . . . . ε̃1 + ε̃2 s ε̃2 + t̃
. . . . . . . . . 2ε̃2


then for the hydrogen molecule the relative error of the diagonal
elements is less than 4%; for the nondiagonal elements the error is
negligible, less than 0.1%

Of course, we cannot fit different charge states by the same parameters
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2c2e model beyond single bond: correlations in acenes
Diradical or strongly correlated?

N Dupuy, M Casula, Fate of the open-shell singlet ground state in the

experimentally accessible acenes: A quantum Monte Carlo study, J Chem Phys

148, 134112 (2018)
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Questions

1. Give physical interpretation for two basis functions
constituting ground state

Ψ ∼ e−η
(∣∣ 1

1

〉
+
∣∣ 2
2

〉)
+ eη

(∣∣ 1
2

〉
+
∣∣ 2
1

〉)
2. What atomic orbitals would you add to improve the accuracy

for the hydrogen molecule?

3. Usually a bond is broken when being elongated. Give example
of “bond breaking” without changing distance between the
two atoms.
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3c4e model of hypervalent and secondary bonding
Let’s consider only molecular
orbital theory

H =

0 t 0
t 0 t ′

0 t ′ 0


• There are three MOs: bonding, nonbonding and antibonding

• The total MO energy E = −2
√
t2 + t ′2 ≈ −2t − t ′2/t

consists of covalent and secondary bond energies

• Bond orders

B12 =
t2

t2 + t ′2
, B23 =

t ′2

t2 + t ′2
illustrate trans-influence rule: the stronger the secondary bond
the weaker the covalent one

• In the limit t ′ = t we have 3c4e hypervalent bonding: it is
stronger than single covalent bond by factor of

√
2, but

weaker than two single bonds by the same factor
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4c4e dimer model: dispersion force

H1e =


0 t 0 0
t 0 t ′ 0
0 t ′ 0 t
0 0 t 0


In the 2nd-order perturbation theory the two dimers attract by
secondary bonding and dispersion force (polarization):

− e−6η

cosh2 2η

∆V 2

8Egap
, ∆V = V13 − V14 − V23 + V24, Egap = 2|t|

because if V is Coulomb potential then at large intermolecular
separations

∆V 2 =
[3(nd1)(nd2)− (d1d2)]2

r6

30 / 47



4c4e dimer model: solvatochromism

H1e =


−V1 − V13 − V14 t1 0 0

t1 −V1 − V23 − V24 0 0
0 0 −V2 − V13 − V23 t2
0 0 t2 −V2 − V14 − V24


The 2nd order correction to the transition energy to the first
excited singlet of the 1st dimer is given by

∆E
(2)
13 =

∆V 2 e−2η1−2η2

8 cosh 2η1 cosh 2η2

(
1

|t1|e2η1 − |t2|e2η2
+

1

|t1|e2η1 + |t2|e2η2
− e4η1

|t2|e2η2 + |t1|e−2η1

)

• The three terms correspond to different virtual transitions in
1st dimer while 2nd dimer is in the virtually excited singlet:
3→ 1, 1→ 3 (correction to the ground state), 3→ 4

• The changes in the transition energy (solvatochromism) is of
the same nature as the dispersion force

• The sign depends on parameters: if studied excitation is the
lowest excitation in the entire system then we have redshift
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4c4e dimer model: energy transfer

H1e =


−V − V13 − V14 t 0 0

t −V − V23 − V24 0 0
0 0 −V − V13 − V23 t
0 0 t −V − V14 − V24


We have resonance

• At the first order the excited state is split into a pair of levels
(Forster transfer):

E13 ≈ 2|t|e2η ± ∆V

e4η + 1

• Note that t ′ does not enter this formula, so that the Dexter
transfer is of the “second order”

• For triplets the first order correction is zero even at resonance
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Onsite 2c2e model: Hund’s rule (model of O2 molecule)

H =


U 0 0 X
. . . V X 0
. . . . . . V 0
. . . . . . . . . U


Because U > V > 0 and X > 0

• The lowest state is the triplet Φ4 (or αα) with energy V − X

• The next two levels are singlets Φ1 (or 20− 02) and Φ3 (or
αβ + βα) with energies U − X and V + X respectively

• The highest state is Φ2 (or 20 + 02) with energy U + X .
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Onsite 2c2e model: orbital relaxation in O2 molecule

• If there is a rotational symmetry then U − V = 2X and thus
Φ1,3 are degenerate

• In fact, orbital relaxation occurs breaking the symmetry and
lowering the single-determinant state

∣∣ 1
1

〉
(or 20)

• O2 example:
I ground state is triplet 3Σ−g
I the lowest singlet is the symmetry-broken 1∆g at 0.98 eV
I it is followed by symmetric singlet 1Σ+

g separated by 0.65 eV
I The estimated exchange integral X = 0.5 eV and the orbital

relaxation energy is 0.65 eV per two electrons
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Onsite 3c3e model: atomic levels (and orbital relaxation)

NIST data for P
In the rotationally symmetric case there are 3 levels:

• the ground state is the quartet 4S with energy −3X

• the first excited state is 2D at zero energy

• it is followed by 2P state at 2X

If the condition U −V = 2X is broken, then the energy of the state
2P is U − V , whereas the state 2D splits into doubly degenerate
state at zero energy and triply degenerate state at U − V − 2X . In
fact, 2D symmetry is exact, whereas other deviations are
signatures of orbital relaxation. Here are NIST data:

• for nitrogen the estimated value of X is 0.79 eV by 4S–2D
transition and 0.60 eV by 2D–2P transition

• phosphorus 0.47 vs 0.46 eV

• arsenic 0.44 vs 0.48 eV
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4c4e tetrahedral model: strong static correlations

• In 1e picture there are doubly occupied a1 MO and two
electrons on triply degenerate t2 MO

• Thus the ground state is 9-fold degenerate: 6 singlets
[F2 × F2] = 1A1 + 1E + 1F2 and 3 triplets {F2 × F2} = 3F1

• Only the quartet 5A2 state is nondegenerate

In fact ee-interaction removes the degeneracy by creating charge
and spin density waves
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4c4e tetrahedral model: degeneracy has been lowered

• Orthogonalized AOs

• H1e
ij = δij − 1− 3V δij

• U, V , X , u, v , x , w

• e-h symmetry
Y = (U − V )/2

• The essential physics of this model can be understood in
terms of only two parameters: X and Y
• X = 0.45 and Y = 0.09 if parameterized by Li4 cluster

FCI/cc-pVQZ calculations of the 5 lowest states
• The lowest 3F1 and 1F2 correspond to bond-order wave

(BOW) with D2d (antiprism) pattern
• The remaining degeneracy is removed by deformations
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4c4e tetrahedral model: it is still “metal-like”
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Boundary between bulk metal and atomic cluster
R Jin, T Higaki, Commun Chem 4, 28 (2021)
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4c4e ring model: density waves

H1e =


0 t 0 t
t 0 t 0
0 t 0 t
t 0 t 0

 SDWCDW BOW

U=2V
4 states

large V
2 states

large U
6 states

MOs for
U=V=0

• Ground state degeneracy

• Three kinds of electron
density waves

• Levels crowding at large U

• Two Slater determinants
for variational function

BOW=bond order wave, CDW=charge density wave, SDW=spin density wave
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1D extended Hubbard model

H = ε
∑
i∈Z

(−1)ini+
∑
i∈Z

(
t + (−1)iδt

)
Ti ,i+1+U

∑
i∈Z

n↑i n↓i +V
∑
i∈Z

nini+1

Standard model: ε = 0 and δt = 0. Nonzero ε stabilizes CDW,
nonzero δt stabilizes BOW

BOW
b b b b

CDW
b b b b

SDW
b b b b
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1D extended Hubbard model at half filling

V/t

U/t

b
(5.89, 3.10)

b

(9.25, 4.76)

CDW

BOW

SDW
rs

(3, 1.2) poly-CH

Phase diagram (in fact the width of BOW phase is only tenths of
t). Double line means the first order transition, single line –
continuous transition. Coordinates of the tricritical point (left) and
critical end point (right) are from [PRL 99, 216403 (2007)]
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1D extended Hubbard model: population analysis
ground state, hole, exciton; U/V = 2/1 vs 16/4; L=32 open, DMRG 4 swipes 500 states
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1D extended Hubbard model: density waves
1e density matrix (diagonal & subdiagonal): ground state & hole; U/V = 2/1 vs 16/4
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1D Peierls model or Su-Schrieffer-Heeger model

H =
∑
i∈Z

t(ui )Ti ,i+1 +
1

2M

∑
i∈Z

p2i +
K

2

∑
i∈Z

u2i

0.1

0.2

0.3

-6 -1 1 6

E,eV

DOS per site, eV−1

gain in
electronic energy

nondimerized
(metal)

dimerized
(insulator)
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Peierls transition vs Jahn–Teller effect

0

0.5

0 1/4 1/2 3/4 1

Ebind, t
′2/t

t′/t

continuous
approximation

perturbation
t′2/2t

46 / 47



Take-home message

Many if not most complex phenomena in quantum chemistry and
condensed matter theory can be conceptually understood on basis
of small-size models
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