
Machine-learning interatomic 
potentials

an automated tool of accelerating ab initio materials modeling

Alexander Shapeev, Skoltech

USPEX SCHOOL 2021,

organized with support from:

1



Molecular modeling

• ~40% of supercomputing time is 
spent on Molecular Modeling

[Adopted from nersc.gov]
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Motivation:

more and more materials properties
can be computed with DFT 
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Ab initio Melting point calculation

Aluminum (8x8x8 k-point mesh):

Zhu, Körmann, Ruban, Neugebauer, Grabowski (2020):
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pyiron - complex workflows made easy
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From rapid prototyping to high performance computing

J. Janssen, et al., Comp. Mat. Sci. 161 (2019) - http://pyiron.org - https://github.com/pyiron/



Overview
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Machine learning as interpolation,

… data-driven and multidimensional.

• Problem: Given 𝐸qm(𝑿), interpolate 
it with 𝐸(𝑿)

• Issue: no transferability w.r.t. the 
number of atoms

• Solution: use locality! (An atom 
interacts only with 10-100 
neighboring atoms) 7



Locality: Energy

𝐸 =

𝑖

𝑉 𝑟𝑖1, 𝑟𝑖2, …

• Most interatomic potentials are 
covered. (Coulomb should be added 
explicitly.)

• Problem: find a good V.
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Traditional fitting
• Embedded atom model: 𝐸 = σ𝑖 𝑉 𝑟𝑖1, 𝑟𝑖2, … ,

• 𝑉 𝒓𝒊 = σ𝑗𝜑 𝑟𝑖𝑗 + 𝐹 σ𝑗 𝜌 𝑟𝑖𝑗 .

• Early interatomic potentials (=force fields) had few 
(three) parameters fitted from few experimental 
data (elastic constants, defect formation energy, 
etc.)

• Later potentials have tens of coefficients (e.g., 
spline coefficients) fitted from the QM data.

• What is different now: there are lots of data!

• So, the question is: how to incorporate lots of data 
into the models?
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Machine-learning ideology:

1. Choose a (machine-learning) model 𝐸 = 𝐸(𝒙)
(𝒙 is an atomic configuration)

2. We want to minimize 𝐸qm − 𝐸 .
So we:

• Generate data: 𝒙 1 , 𝒙 2 , …; 𝐸qm 𝒙 1 , 𝐸qm 𝒙 2 ,…, 𝒇qm 𝒙 1 , …

• Minimize on data: σ𝑖 𝐸 𝑥 𝑖 − 𝐸qm 𝑥 𝑖 2
+ (forces)+…

But what if sampling the right 𝒙 𝑖

is a part of the problem? 10



Illustration: calculating convex hull

Problem:

• accurate sampling of ground 
state structures

needs

• accurate approximation of PES

which needs

• accurate sampling of ground 
state structures

which needs …

NEB
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Solution: Active learning / Learning on-the-fly
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Moment Tensor Potentials: descriptors

Descriptors of atomic environments:

• Moments of inertia of surrounding atoms

• They satisfy the needed symmetries (rotation, 
permutation, translation, …); 

• Math:

• 𝑀𝑛,𝑚 𝒓𝒊∙ = σ𝑗 𝑓𝑛 𝑟𝑖𝑗 𝑟𝑖𝑗 ⊗⋯⊗ 𝑟𝑖𝑗
𝑚 times

𝑖

𝑟𝑖1

𝑟𝑖2

𝑟𝑖3

𝑖

𝑀 = itertia tensorRadial term: extracting 
shells of neighboring atoms

Angular term: 
shell orientations 13



Moment Tensor Potentials, basis functions

• 𝑉 𝒖; 𝜃 = σ𝛼 𝜃𝛼𝐵𝛼(𝒖)

• 𝐵𝛼 𝐮 are (all) different multiplications (contractions) of inertia tensors
𝑀𝑚,𝑛 𝐮 yielding a scalar.

Theorem:

• 𝐵𝛼 𝐮 is an (over-)complete basis

Similar to Atomic Cluster Expansion [Drautz (2019)], see

[Bachmayr, Csanyi, Dusson, Etter, van der Oord, Ortner (2020)]
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Learning curves

Database (Csanyi, Bartok, Szlachta, 2014)

• Tungsten: uniform and perturbed lattices, vacancies, dislocations
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Performance tests

Database (Csanyi, Bartok, Szlachta, 2014)

• Tungsten: uniform and perturbed lattices, vacancies, dislocations
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Comparison with more methods

Yunxing Zuo,
Chi Chen,
Xiangguo Li,
Zhi Deng,
Yiming Chen,
Jörg Behler,
Gábor Csányi,
A.S.,
Aidan P. Thompson, 
Mitchell A. Wood,
Shyue Ping Ong.
arXiv:1906.08888
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Active Learning of 
Interatomic Potentials
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Active learning
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Active Learning of MLIP: Motivation

Higher accuracy => More parameters to fit => Lower transferability
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Active learning

Solution: detect when we are extrapolating and switch on learning
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Existing developments (known to me)

• J. Behler;
Smith, Nebgen, Lubbers, Isayev, Roitberg;
Zhang, Lin, Wang, Car, E

query by committee

• R. Ramprasad:
train a 2nd ML model to predict the degree of uncertainty

• Jinnouchi, Lahnsteiner, Karsai, Kresse, Bokdam:
Gaussian process predictive variance

• Noam, Csanyi, Deringer:
a metric-based criterion

• A.S.:
D-optimality
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How we do it?

D-optimality

Skip to Applications
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D-optimality

essentially

• detects hitting outside a 
convex hull, 

but for linear models

(convex hull -> simplex)

Algorithm: 𝑂(𝑁2)

E. Podryabinkin, A. Shapeev (2017)

Atomic descriptor 1

Atomic descriptor 2

Interpolation - ok

Extrapolation –
add to train set
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Applications
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Application #1: Learning on the fly

• Combines training and 
evaluation of MLIP

• Detects and learns 
“extrapolative” 
configurations

• Robust

• Balancing accuracy and 
amount of QM calcs
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Application example #0: Learning on the fly in MD 
process at NVT-ensemble of 128 BCC-Li atoms
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RMS Energy error vs. QM calcsQM calcs while learning on the fly

Conclusion: Amount of QM calcs can be reduced several times at the cost 
of minor losses in accuracy
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Overview
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We want to
machine-learn

this

Prediction of convex hull of stable alloys

How it is done:

1. Start with 1500 crystal prototypes 
(unequilibrated structures)

2. Equilibrate (relax) them with DFT and 
choose the ones on the convex hull

prototype
Relaxed
structure

Structure Sampling

Structure Relaxation

QM

config EFS
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prototype
Relaxed
structure

Convex hulls now

Structure Sampling

Structure Relaxation

AL-MLIP 

QM

config EFS

config EFS

How it is done:

1. Start with 400K crystal prototypes 
(unequilibrated structures)

2. Equilibrate (relax) them with MLIP while 
learning on the fly

K. Gubaev,E. Podryabinkin, 
Gus L.W. Hart, A.S. (2019)
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Convex hulls now: details
1. Screen-1:

1. Start with 400K structures

2. Obtain 400K relaxed structures,
with RMSE = 25 meV/atom

3. Retain 40K low-energy structures 
(within 4-)

2. Screen-2:
1. Start with 60K structures

2. Obtain 60K relaxed structures,
with RMSE = 9 meV/atom

3. Retain 7K low-energy structures 
(within 4-)

3. Final relaxation:
1. Relax 7K structures on DFT
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Results

• Some newly discovered structures are hard to “sample passively”:
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Results and Discussion
• No approximation error in the answer!

(We only take a risk of missing a structure in the 4- interval.)

• 100x speed-up; CPU time:

1. Final relaxation: 90%

2. Training set: 9%

3. Training, Relaxation: 1%

• Main challenge: reduce the 90%  improve accuracy (9 meV/atom):

• Sampling is now the bottleneck, not DFT
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