FHI-aims capabilities for molecules, clusters, and solids

Debalaya Sarker, Zhong Kang Han, Sergey Levchenko

FHI-aims

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications **180**, 2175-2196 (2009)

Main focus:

 Accurate all-electron electronic-structure calculations (DFT and beyond) for both periodic and cluster/ molecular systems

• Massively parallel

Robust interface: atomic simulation environment (ASE)

Approximations to the electronic problem: Basis set

Idea: represent all unknown functions ($\rho(\mathbf{r}), \psi_i(\mathbf{r})$) as a linear combination of known functions with well-defined properties: $\psi_i(\mathbf{r}) = \sum C_{ip} \varphi_p(\mathbf{r})$ Widely used basis sets:

gaussians $x^i y^j z^k \exp(-\alpha r^2)$ (localized, analytic integrals)

plane waves $exp(i\mathbf{k} \cdot \mathbf{r})$ (delocalized, analytic integrals)

Slater-type $x^i y^j z^k \exp(-\alpha r)$ (localized, nuclear cusp)

grid-based $\delta(\mathbf{r} - \mathbf{r}_i)$ (localized, analytic integrals)

Core electrons are often treated separately (pseudopotentials, planewave + localized basis)

The basis set: Numeric atomic orbitals

$$arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)$$

• $u_i(r)$: Flexible choice - "Anything you like."

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et *al.*), PLATO (Horsfield *et al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

The basis set: Numeric atomic orbitals

$$\left(arphi_{i[lm]}(oldsymbol{r}) = rac{u_i(r)}{r} \cdot Y_{lm}(\Omega)
ight)$$

<u>Many popular implementations:</u> DMol³ (Delley), FPLO (Eschrig et *al.*), PLATO (Horsfield et *al.*), PAOs (Siesta, Conquest, OpenMX², Fireball, ...)

• $u_i(r)$: Flexible choice - "Anything you like."

- → Localized; "naturally" all-electron
- → The choice of <u>efficient</u> and of <u>enough</u> radial functions is obviously important
- → We have a basis set library for all elements (1-102), from fast qualitative to meV-converged (total energy, LDA/GGA) calculations -<u>efficient and accurate approach</u>

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler, "Ab Initio Molecular Simulations with Numeric Atom-Centered Orbitals", Computer Physics Communications 180, 2175-2196 (2009)

<u>"Pool" of trial basis functions:</u> 2+ ionic *u(r)* Hydrogen-like *u(r)* for z=0.1-20

Optimization target: Non-selfconsistent symmetric dimers, averaged for different d

Pick basis functions one by one, up to complete total energy convergence

Systematic hier	-	Au	О	С	Н	
Dasis (sub)sets,	_	[Xe] + 6s5d4f	$[\mathrm{He}]{+}2s2p$	$[\mathrm{He}]{+}2s2p$	1s	minimal
based on di	٦	$Au^{2+}(6p)$	H(2p, 1.8)	H(2p,1.7)	H(2s, 2.1)	Tier 1
Dased Off di		H(4f, 7.4)	H(3d, 7.6)	H(3d, 6.0)	${\rm H}(2p,\!3.5)$	
"Eirst tier (lovel)"	L	$Au^{2+}(6s)$	H(3s, 6.4)	H(2s, 4.9)		
Thist der (level)		H(5g,10)				
		${\rm H}(6h,\!12.8)$				
	J	H(3d, 2.5)				
		H(5f, 14.8)	H(4f, 11.6)	$\mathrm{H}(4f,\!9.8)$	H(1s, 0.85)	Tier 2
		H(4d, 3.9)	H(3p, 6.2)	$\rm H(3p, 5.2)$	H(2p, 3.7)	
"Second tier"		H(3p, 3.3)	H(3d, 5.6)	H(3s, 4.3)	H(2s, 1.2)	
	\int	H(1s, 0.45)	${\rm H}(5g,\!17.6)$	$\mathrm{H}(5g,\!14.4)$	H(3d, 7.0)	
		${\rm H}(5g,\!16.4)$	H(1s, 0.75)	H(3d, 6.2)		
	J	${\rm H}(6h,\!13.6)$				
)	$\mathrm{H}(4f,\!5.2)^*$	$O^{2+}(2p)$	${\rm H}(2p,\!5.6)$	$\mathrm{H}(4f,\!11.2)$	Tier 3
		H(4d, 5.0)	${\rm H}(4f,\!10.8)$	H(2s,1.4)	${\rm H}(3p,\!4.8)$	
"Third <i>tier</i> "	4					
•••						

tic hierarchy of 0 s, iterative nstruction dimers

The basis set: additional parameters to converge

$$h_{ij} = \int d^3 r \varphi_i(\boldsymbol{r}) \hat{h}_{\rm KS} \varphi_j(\boldsymbol{r})$$

• Discretize to integration grid:

$$\int d^3r f(m{r})
ightarrow \sum_{m{r}} w(m{r}) f(m{r})$$

... but even-spaced integration grids are *out*: f(r) strongly peaked near all nuclei!

- Overlapping atom-centered integration grids:
 - Radial shells (e.g., H, light: 24; Au, tight: 147)
 - Specific angular point distribution ("Lebedev") exact up to given integration order *l* (50, 110, 194, 302, points per shell)

Pioneered by Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

Electronic structure methods

Quantum chemistry & many-body theory:

$$\left(\hat{\mathcal{H}}\Psi = E\Psi\right)$$

... successive refinement of $\boldsymbol{\psi}$

"Perdew's ladder"

to exact solution

Density functional theory: (Hohenberg-Kohn 1964, Kohn-Sham 1965)

 $E_{tot} = E[n(r)] = T_s[n] + V[n] + V_{es}[n] + E_{xc}[n]$

• Key practical approximation: E_{xc} response / many-body terms: RPA, SOSEX, ... hybrid functionals: non-local exchange meta-GGAs: $\nabla^2 n(r), \nabla^2 \phi(r)$ Generalized gradient approximations (GGAs): $|\nabla n(r)|$ Local-density approximation (LDA): n(r)

Standard DFT and the self-interaction error

$$E_{\text{tot}} = T[n] - \sum_{I=1}^{M} Z_{I} \int \frac{n(\mathbf{r})}{|\mathbf{r} - \mathbf{R}_{I}|} d^{3}r + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_{I} Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' + E_{\text{XC}}[n]$$

exchange-
(includes self-
interaction) (XC) energy

LDA, GGA, meta-GGA: $E_{\rm XC}[n] = E_{\rm X}^{\rm loc}[n] + E_{\rm C}^{\rm loc}[n]$

Standard DFT: (Semi)local XC operator → low computational cost Removing self-interaction + preserving fundamental properties (e.g., invariance with respect to subspace rotations) is non-trivial → residual self-interaction (error) in standard DFT

Consequences of self-interaction (no cancellation of errors): localization/delocalization errors, incorrect level alignment (charge transfer, reactivity, etc.)

The Hartree-Fock (HF) approximation

$$\Psi(\mathbf{r}_{1}\sigma_{1},\mathbf{K},\mathbf{r}_{N}\sigma_{N}) = \frac{1}{\sqrt{N!}} \det[\psi_{1}(\mathbf{r}_{1},\sigma_{1}),\mathbf{K},\psi_{N}(\mathbf{r}_{N},\sigma_{N})]$$
one-particle states
$$E_{\text{tot}} = \sum_{n=1}^{N} \langle \psi_{n} | \hat{h} | \psi_{n} \rangle + \frac{1}{2} \sum_{I=1}^{M} \sum_{J=1}^{M} \frac{Z_{I}Z_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|} + \frac{1}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' - \frac{1}{2} \sum_{m,n=1}^{N} \int \frac{\psi_{m}^{*}(\mathbf{r},\sigma)\psi_{n}^{*}(\mathbf{r}',\sigma')\psi_{n}(\mathbf{r},\sigma)\psi_{m}(\mathbf{r}',\sigma')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' d\sigma d\sigma'$$
IF (exact) exchange energy

• No self-interaction

• Coulomb mean-field \rightarrow no dynamic correlation, single determinant \rightarrow no static correlation

Hybrid DFT

 $E_{\rm XC}[\{\psi\}] = \alpha E_{\rm X}^{\rm HF}[\{\psi\}] + (1-\alpha)E_{\rm X}^{\rm loc}[n] + E_{\rm C}^{\rm loc}[n]$

-- easy in Kohn-Sham formalism ($n = \sum_{n} f_n |\psi_n|^2$)

Perdew, Ernzerhof, Burke (J. Chem. Phys. 105, 9982 (1996)): $\alpha = 1/N$

MP4 \rightarrow N = 4, but "An ideal hybrid would be sophisticated enough to optimize N for each system and property."

Range-separated functionals: HSE family

$$\frac{1}{r} = \frac{1 - \operatorname{erf}(\omega r)}{r} + \frac{\operatorname{erf}(\omega r)}{r}$$

short-range (SR) long-range (LR)

$$E_{\mathrm{XC}}^{\mathrm{HSE}} = \alpha E_{\mathrm{X}}^{\mathrm{HF,SR}}(\omega) + (1 - \alpha) E_{\mathrm{X}}^{\mathrm{PBE,SR}}(\omega) + E_{\mathrm{X}}^{\mathrm{PBE,LR}}(\omega) + E_{\mathrm{C}}^{\mathrm{PBE}}$$

Hartree-Fock exchange – the problem

Lots of integrals, naïve implementation $\rightarrow N^4$ scaling (storage impractical for N > 500 basis functions)

- need fast evaluation
- need efficient use of sparsity (screening)

"Resolution of identity" (RI) (density fitting)

independent auxiliary basis

Basis-pair space is overcomplete, since $\{\varphi_i(\mathbf{r})\}$ approaches completeness \rightarrow size of $\{P_\mu(\mathbf{r})\}$ ~4-5 times size of $\{\varphi_i(\mathbf{r})\}$

Localized RI-V (RI-LVL, Jürgen Wieferink)

16

64

256

Number of CPUs

1024

4096

Zincblende GaAs

Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler, Comp. Phys. Commun. 192, 60-69 (2015).

Hybrid functionals in FHI-aims

Levchenko, Ren, Wieferink, Rinke, Johanni, Blum, Scheffler, Comp. Phys. Commun. **192**, 60-69 (2015).

Advanced electronic-structure methods (active development)

Practicalities

Login to the cluster:

ssh your_user_name@10.30.99.219 -p 2222

Download the tutorial file:

scp –P 2222 your_user_name@10.30.99.219:~/fhiaims/Tutorial.pdf ~/path_to_your_download_folder

Set up environmental variables: source /tmp/fhiaims.sh Read the tutorial file and follow the instructions Download FHI-aims manual:

scp -P 2222 your_user_name@10.30.99.219:~/fhiaims/FHI-aims.pdf ~/path_to_your_download_folder

Run FHI-aims via the batch system:

1) sbatch ~/fhiaims/job.sh

- 2) The output is in output
- 3) To see the progress, type: tail -f output

Problem I: Hydrogen atom

Tasks:

- Input files needed to run FHI-aims.
- Test the convergence of the total energy with basis size.
- Compare the total energy of the hydrogen atom computed with different methods implemented in FHI-aims. Do all methods converge to the same result?

FHI-aims input files

. . .

geometry.in

Atomic structure

x y z

atom 0.0 0.0 0.0 H atom 1.0 0.0 0.0 H initial_moment 1.0

That's a comment

Units: Positions in Å Energies in eV

Manual, chap. 2.1

control.in

Physical model settings xc pw-lda charge 0. spin collinear **# SCF convergence settings** sc_accuracy_eev 1E-2 sc_accuracy_etot 1E-5 sc_accuracy_rho 1E-4 sc_iter_limit 100 **#** Species specifics

Default basis sets

FHI-aims/species_defaults

Predefined species Copy-paste into control.in Manual, chap. 2.2

- light
- tight
- really tight

Increased accuracy:

Basis Hartree potential Basis cutoff potential Integration grids

Default basis sets

FHI-aims/species_defaults

Predefined species Copy-paste into control.in Manual, chap. 2.2

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests

Default basis sets

FHI-aims/species_defaults

Predefined species Copy-paste into control.in Manual, chap. 2.2

- light
- tight
- really tight

Fast, many production tasks Fast pre-relaxation

Used to verify important results Converged settings

Heavily converged numerical settings Explicit convergence tests

Additionally converge "tiers"

Invoking FHI-aims ...

Reading file control.in.

Reading geometry description geometry.in.

Preparing all fixed parts of the calculation.

Geometry independent preparations Basis set generation

1

Geometry dependent preparations Integration grid Initialization of charge density

First SCF cycle

» Self-consistency convergence accuracy

Change	οİ	charge	density	:	0.6753E-02	
Change	of	sum of	eigenvalues	:	0.4376E+00	eV
Change	of	total e	energy	:	0.1143E-01	eV

6

Sixth SCF cycle

» Self-consistency convergence accuracy

I	Change	of	charge density	:	0.3163E-05	
I	Change	of	sum of eigenvalues	:	9415E-05	eV
I	Change	of	total energy	:	0.2388E-10	eV

6

Self-consistency cycle converged.

» Energy and forces

| Total energy uncorrected : -0.130198526094581E+02 eV | Total energy corrected : -0.130198526094581E+02 eV | Electronic free energy : -0.130198526094581E+02 eV

» SCF info

| Number of self-consistency cycles : 6

» Timings

Have a nice day.

Self-consistency cycle converged.

Have a nice day.

8

Problem II: O₂

Tasks:

- Learn how to optimize geometry with FHI-aims.
- Calculate relative energies of different spin states.
- Calculate the atomization energy (ΔH_{at}) .
- See how geometry and atomization energy depend on the exchange-correlation functional.

Problem III-VIII: H₃O⁺

Problem III-VIII: H₃O⁺

Structure optimization: Find local minimum on potential energy surface (PES)

Problems III-VIII: H₃O⁺

Tasks:

- Relax structure with two different starting points.
- Make a vibrational analysis.
- Explore the limits of the harmonic approximation.

Important practical points

Each calculation one directory, for example

- > mkdir tutorial1
- > cd tutorial1
- > mkdir O2

2 input files (plus 1 for pseudopotential embedding)

geometry.in control.in

Visualization

Orbitals and densities

Keyword in control.in

output cube eigenstate homo
cube filename HOMO.cube
output cube total_density
cube filename tot_dens_uc.cube

Get: *.cube file - values on a regular 3D grid. Software: jmol \Rightarrow Appendix of handout

Text editor: vi

> vi <file_name>

insert text -- i + text esc -- exit the insert mode :wq -- save file

dd -- delete a line

Finding the RI coefficients: RI-SVS

Finding better RI coefficients

$$\rho_{ij}(\mathbf{r}) = \varphi_i(\mathbf{r})\varphi_j(\mathbf{r}), \quad (ij \mid kl) = \int \frac{\rho_{ij}(\mathbf{r})\rho_{kl}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3r$$

Let us calculate the error in (*ij*|*ij*) – the largest integrals:

$$\delta(ij \mid ij) = 2\int \frac{\delta\rho_{ij}(\mathbf{r}) \left(\sum_{\nu} C_{ij}^{\nu} P_{\nu}(\mathbf{r}')\right)}{|\mathbf{r} - \mathbf{r}'|} d^{3}r d^{3}r' + \Delta(\delta\rho_{ij}^{2})$$

first-order correction does not vanish in RI-SVS!

Is it possible to do better without increasing the size of the auxiliary basis?

Finding better RI coefficients: RI-V

Set the first-order correction to zero, minimize second-order:

Finding better RI coefficients: RI-V

Distant aux. functions contribute to the integrals \rightarrow a lot of memory and operations \rightarrow scaling N^3

Hartree-Fock exchange in extended systems

Electron repulsion integrals in periodic systems

RI-V is impractical for extended systems

RI-LVL: Sparse, easier to calculate, linear scaling is possible!

$$I_{ij\mathbf{R}',k\mathbf{R}/\mathbf{R}+\mathbf{R}''} = \sum_{\mu\mathbf{Q}'}\sum_{\nu\mathbf{Q}''} C_{i,j\mathbf{R}'}^{\mu\mathbf{Q}'} V_{\mu\nu(\mathbf{R}+\mathbf{Q}''-\mathbf{Q}')} C_{k,l\mathbf{R}''}^{\nu\mathbf{Q}''}$$

Real-space dynamical mean-field embedding

Embedding surrounding (grey)

Calculated with LDA/GGAs

Embedded region (red)

- Hybrids: PBEh and HSE
- Green's function methods:
 the scGW

