

Overview

- 1. The ABINIT software project
- 2. ABINIT basics
- 3. Pseudopotentials / PAW
- 4. Reliability / Portability / Accuracy
- 5. Materials properties from energy derivatives
- 6. Density-Functional Perturbation Theory
- 7. >1500 phonon band structure from ABINIT
- 8. Effects of the electron-phonon interaction

ABINIT software project

Ideas (1997) :

- 1) Software for first-principles simulations are more and more complex : needs a worldwide collaboration, of specialized, complementary, groups
- 2) Linux software development : 'free software' model

Now (2021) : >5000 citations >800 kLines of F90 + many python scripts (abipy) about 50 contributors to ABINITv8/v9

Last release v9.6.2, http://www.abinit.org

Available freely (GPL, like Linux).

Properties from DFT+MBPT+ ...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

ABINIT v9 capabilities (I)

Methodologies

Pseudopotentials/Plane Waves

+ Projector Augmented Waves (for selected capabilities) Many pseudopotential types, different PAW generators (ATOMPAW is shipped with ABINIT)

Density functionals : LDA, GGA (many : PBE and variations, HCTH, ...),

LDA+U (or GGA+U)

hybrid functionals + ...

LR-TDDFT for finite systems excitations GW for accurate electronic eigenenergies Bethe-Salpeter for accurate optical properties Dynamical mean field-theory (DMFT)

alpha-Cerium from DMFT

ABINIT v9 capabilities (II)

Insulators/metals - smearings : Fermi, Gaussian, Gauss-Hermite ...
 Collinear spin / non-collinear spin / spin-orbit coupling
 Forces, stresses, automatic optimisation of atomic positions and unit cell parameters (Broyden and Molecular dynamics with damping)

Molecular dynamics, Nosé thermostat, Langevin dynamics Path-Integral Molecular Dynamics, String / NEB method for saddle points

Susceptibility matrix by sum over states Optical (linear + non-linear) spectra Polarization, finite electric field Electric field gradients Positron lifetime

Symmetry analyser (database of 230 spatial groups + 1191 Shubnikov magnetic groups)

ABINIT v9 capabilities (III)

Density-Functional Perturbation Theory :

- Responses to atomic displacements, to static homogeneous electric field, to strain perturbations
- Second-order derivatives of the energy, giving direct access to : dynamical matrices at any q, phonon frequencies, force constants ; phonon DOS, thermodynamic properties (quasi-harmonic approximation) ; dielectric tensor, Born effective charges ; elastic constants, internal strain ; piezoelectric tensor ...
- Matrix elements, giving direct access to : electron-phonon coupling (mobility, Seebeck, superconductivity) temperature-dependence of the electronic structure
- Non-linear responses thanks to the 2n+1 theorem at present : non-linear dielectric susceptibility; Raman cross-section ; electro-optic tensor

Basic Documentation

Web site http://docs.abinit.org

- User's guides
- Installations notes
- List of input variables + description
- List of topics = a hub to input variables, files, tutorial, bibrefs
- over 1000 example input files
- >30 tutorial lessons (each 1-2 hours) https://docs.abinit.org/tutorial

+ New Forum Web site <u>https://discourse.abinit.org</u> (old forum <u>http://forum.abinit.org</u> with more than 2000 registered members)

ABINIT tutorial : layout + dependencies

ABINIT + python : Abipy, Abitutorials ...

ABINIT organization on GitHUB https://github.com/abinit

Abipy : python library for launching ABINIT jobs, and analysing/plotting the results <u>http://pythonhosted.org/abipy</u> => e.g. connecting ABINIT with tools for high-throughput calculations developed in the Materials Project context (like Pymatgen, Fireworks).

Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

AB • Belg	INIT gium 🗠 https://www.abiu	nit.org 🛛 trunk@abinit.org	
Repositories 13	Le People 19	Teams 0 Projects 2 Settings	
Pinned repositories			Customize pinned repos
■ abinit The official github mirror We update the first or	of the Abinit repository.	■ abipy Open-source library for analyzing the results	■ abitutorials Abinit tutorials based on AbiPy

ABINIT : basics

Density Functional Theory calculations

In ABINIT ...

Representation of mathematical formalism with a Plane Wave basis set :

- wavefunctions
- density, potential

Periodic boundary conditions

=> wavefunctions characterized by a wavevector (k-vector)

PseudoPotentials (or Projector Augmented Waves – PAW)

Iterative techniques to solve the equations (Schrödinger equation ; DFT Self-consistency ; optimisation of atomic positions)

ABINIT : a periodic code

Plane waves $e^{i\mathbf{Kr}}$: particularly simple and efficient (when used with pseudopotentials), but infinite spatial extent.

Cannot use a finite set of planewaves for finite systems ! Need periodic boundary conditions.

Primitive vectors \mathbf{R}_{i} , primitive cell volume Ω_{0}

OK for crystalline solids But : finite systems, surfaces, defects, polymers, nanosystems ... ?

Solution : the supercell technique

Molecule, cluster

Surface : treatment of a slab Interface

Point defect in a bulk solid

The supercell must be sufficiently big : convergence study

Examples of defects SiO₂-quartz : Pb

72-atom supercell of quartz

Pseudopotentials

Core and valence electrons (I)

Core electrons occupy orbitals that are « the same » in the atomic environment or in the bonding environment

It depends on the accuracy of the calculation !

Separation between core and valence orbitals : the density...

$$n(\mathbf{r}) = \sum_{i}^{N} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})$$
$$= \sum_{i \in core}^{N_{core}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) + \sum_{i \in val}^{N_{val}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) = n_{core}(\mathbf{r}) + n_{val}(\mathbf{r})$$

« Frozen core » for $i \in core : \psi_i = \psi_i^{atom}$

Small core / Large core

It depends on the target accuracy of the calculation ! (remark also valid for pseudopotentials, with similar cores) For some elements, the core/valence partitioning is obvious, for some others, it is not.

F atom :
$$(1s)^{2} + (2s)^{2}(2p)^{5}$$

IP 1keV 10-100 eV
Ti atom : $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ small core
 $(1s)^{2}(2s)^{2}(2p)^{6}(3s)^{2}(3p)^{6}(4s)^{2}(3d)^{2}$ large core
IP 99.2 eV 43.3eV

Gd atom : small core with n=1,2,3 shells , might include 4s, 4p, and 4d in the core. 4f partially filled

Core and valence electrons (II)

Separation between core and valence orbitals : the energy ...

$$E_{\mathrm{KS}}\left[\left\{\boldsymbol{\psi}_{i}\right\}\right] = \sum_{i} \left\langle\boldsymbol{\psi}_{i}\right| - \frac{1}{2} \nabla^{2} \left|\boldsymbol{\psi}_{i}\right\rangle + \int V_{ext}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int \frac{n(\mathbf{r}_{1}) n(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|} d\mathbf{r}_{1} d\mathbf{r}_{2} + E_{\mathrm{xc}}\left[n\right]$$

$$E_{\mathrm{KS}}\left[\left\{\boldsymbol{\psi}_{i}\right\}\right] = \sum_{i \in core}^{N_{core}} \left\langle\boldsymbol{\psi}_{i}\right| - \frac{1}{2} \nabla^{2} \left|\boldsymbol{\psi}_{i}\right\rangle + \int V_{ext}(\mathbf{r}) n_{core}(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int \frac{n_{core}(\mathbf{r}_{1}) n_{core}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|} d\mathbf{r}_{1} d\mathbf{r}_{2}$$
$$+ \sum_{i \in val}^{N_{val}} \left\langle\boldsymbol{\psi}_{i}\right| - \frac{1}{2} \nabla^{2} \left|\boldsymbol{\psi}_{i}\right\rangle + \int V_{ext}(\mathbf{r}) n_{val}(\mathbf{r}) d\mathbf{r} + \frac{1}{2} \int \frac{n_{val}(\mathbf{r}_{1}) n_{val}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|} d\mathbf{r}_{1} d\mathbf{r}_{2}$$
$$+ \int \frac{n_{val}(\mathbf{r}_{1}) n_{core}(\mathbf{r}_{2})}{\left|\mathbf{r}_{1} - \mathbf{r}_{2}\right|} d\mathbf{r}_{1} d\mathbf{r}_{2} + E_{\mathrm{xc}} \left[n_{core} + n_{val}\right]$$

Removing core electrons (I)

From the previous construction : valence orbitals must still be orthogonal to core orbitals (=> oscillations, slope at the nucleus ...)

Pseudopotentials try to remove completely the core orbitals from the simulation

Problem with the number of nodes This is a strong modification of the system ...

Pseudopotentials confine the strong changes within a « cut-off radius »

Removing core electrons (II)

Going from $\left(-\frac{1}{2}\nabla^2 + v\right) |\psi_i\rangle = \varepsilon_i |\psi_i\rangle$

To
$$\left(-\frac{1}{2}\nabla^2 + v_{ps}\right) |\psi_{ps,i}\rangle = \varepsilon_{ps,i} |\psi_{ps,i}\rangle$$

Possible set of conditions (norm-conserving pseudopotentials) NCPP - Hamann D.R., Schlüter M., Chiang C, Phys.Rev.Lett. 43, 1494 (1979)

$$\varepsilon_{i} = \varepsilon_{ps,i}$$

$$\psi_{i}(\mathbf{r}) = \psi_{ps,i}(\mathbf{r}) \quad \text{for } \mathbf{r} > \mathbf{r}_{c}$$

$$\int_{\mathbf{r} < \mathbf{r}_{c}} |\psi_{i}(\mathbf{r})|^{2} d\mathbf{r} = \int_{\mathbf{r} < \mathbf{r}_{c}} |\psi_{ps,i}(\mathbf{r})|^{2} d\mathbf{r}$$

For the lowest angular momentum channels (s + p ... d ...f)

Generalisation : ultra-soft pseudopotentials (USPP), projector-augmented plane waves (PAW)

Example of pseudopotential

Pseudopotentials/PAW data in ABINIT

• Preferred PAW atomic dataset table : JTH

Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)

He н Be Ne Li С N F в 0 Na Mg Al Si P S Cl \mathbf{Ar} Sc Ti Mn Fe Co Ni Cu Zn Ga Ge As Se \mathbf{Br} Kr \mathbf{K} Ca \mathbf{Cr} v Ag Rh Pd Rb \mathbf{Sr} Y \mathbf{Zr} Nb Mo Tc Ru Cd In Sn Sb Te Xe Hf Ta W Re Os \mathbf{hr} Pt Au Hg Tl Pb Bi Po Cs Ba At Rn Sg Rf Hs Mt Fr | Ra Ha Ns Nd Pm Sm Gd Dy Pr Eu Tb Er La Ce Ho Tm Yb Lu Pa Pu Cm Bk Cf Fm Md Ac Th U No Am Es No \mathbf{Lr} Atomic data available Atomic data non available

https://www.abinit.org/psp-tables

Also, possibility to use : GPAW table, GBRV v1.0 table, or norm-conserving pseudopotentials (e.g. ONCVPSP pseudo generator), or many others

Pseudopotentials/PAW data in ABINIT

Norm-conserving pseudos : pseudo-dojo approach

Van Setten et al , Computer Physics Comm. 226, 39 (2018)

https://www.pseudo-dojo.org

Reliability / portability Accuracy

Quality control : test suite + test farm

How to secure existing capabilitites despite the development efforts (by diverse groups) and associated bug generation ? Test suite : >1000 automatic tests (+ new added for each capability) Test farm : >12 computers (4 to 64 cores)

with 3 compilers (gfort, Intel, NAG) => over 20 'builders'

Name	Brand	CPU / Freq	# cores	RAM	OS	misc
abiref	HP DL360 gen9	Xeon E5-2670v3/ 2.30	2 x 24	32GB	CentOS 7.2	Ref
bob	Dell R430	Xeon E5-2603v3/ 1.60	2 x 6	8GB	Fedora 23	
buda	SuperMicro	Xeon X5570/ 2.7	2 x 4	12GB	CentOS 6.8	2xGPU K40 2xGPU C1060
coba2	HP Z400	Xeon W3520/ 2.7	4	12GB	CentOS 6.5	
cronos	HP DL185 G7	AMD Opteron 6276/ 2.3	2 x 16	16GB	Debian 5.0	
graphene	Apple MacPro	Xeon E5-2697/ 2.7	1 x 12	64GB	MacOS X 10.12	
ibm8	IBM Power S824	Power8/ 3.0	4	8GB	AIX 7.2	
inca	virtual machine	Opteron 6276/ 2.3	12	30GB	CentOS 6.9	
max2	HP DL185	Opteron 6140/ 2.6	2 x 8	12GB	Slinux 6.1	
petrus	Intel	Core i7 3930/ 3.2	6	16GB	openSUSE 12.1	
testf	Bull Novascale	Xeon X5570/ 2.9	2 x 4	12GB	CentOS 5.11	
tikal	Dell T5500	Xeon X5647/ 3.0	8	8GB	Slinux 6.9	
ubu	HP DL360 gen9	Xeon E5-2670v3/ 2.30	2 x 24	32GB	Ubuntu 16.04	

Comparing code/pseudopotential

In 2016, large effort related to the quantification of numerical accuracy/precision:

« Delta-factor » collaboration

Lejaeghere ... Cottenier, Science 351, aad3000 (2016)

Specification of 71 elemental solids for different volumes.

binit Skoltech

Validation (vs exp.)/ verification (numerics)

All-electron and PAW spread of values

AE = "All cloctron" calculations		^	S AL							
AE = "All-electron" calculations PAW = "Projector-Augmented Waves" a kind of pseudopotential calculation		average <≜	Elk	exciting	FHI-aims/ti	FLEUR	FPLO/T+F+S	RSPt	WIEN2k/acc	
•		Elk	0.6		0.3	0.3	0.6	1.0	0.9	0.3
		exciting	0.5	0.3		0.1	0.5	0.9	0.8	0.2
		FHI-aims/tier2	0.5	0.3	0.1		0.5	0.9	0.8	0.2
	AE	FLEUR	0.6	0.6	0.5	0.5		0.8	0.6	0.4
		FPLO/T+F+s	0.9	1.0	0.9	0.9	0.8		0.9	0.9
		RSPt	0.8	0.9	0.8	0.8	0.6	0.9		0.8
		WIEN2k/acc	0.5	0.3	0.2	0.2	0.4	0.9	0.8	
		GBRV12/ABINIT	0.9	0.9	0.8	0.8	0.9	1.3	1.1	0.8
	-	GPAW09/ABINIT	1.4	1.3	1.3	1.3	1.3	1.7	1.5	1.3
	5	GPAW09/GPAW	1.6	1.5	1.5	1.5	1.5	1.8	1.7	1.5
	PP	JTH02/ABINIT	0.6	0.6	0.6	0.6	0.6	0.9	0.7	0.5
	071.76	PSlib100/QE	0.9	0.9	0.8	0.8	0.8	1.3	1.1	0.8
-		VASPGW2015/VASP	0.6	0.4	0.4	0.4	0.6	1.0	0.8	0.3

Accurate band gap from GW approximation

Germanium band structure

GW approximation

Wavefunctions

DFT

$$\begin{pmatrix} -\frac{1}{2}\nabla^{2} + V_{ext}(\mathbf{r}) + V_{H}(\mathbf{r}) \end{pmatrix} \psi_{i}(\mathbf{r}) + V_{xc}(\mathbf{r})\psi_{i}(\mathbf{r}) = \mathcal{E}_{i}^{KS}\psi_{i}(\mathbf{r}) \qquad \text{DFT}$$

$$\begin{pmatrix} -\frac{1}{2}\nabla^{2} + V_{ext}(\mathbf{r}) + V_{H}(\mathbf{r}) \end{pmatrix} \psi_{i}(\mathbf{r}) + \int \Sigma(\mathbf{r},\mathbf{r}';\mathcal{E}_{i}^{QP})\psi_{i}(\mathbf{r}')d\mathbf{r}' = \mathcal{E}_{i}^{QP}\psi_{i}(\mathbf{r})$$

$$\sum(\mathbf{r},\mathbf{r}';\omega) = \lim_{\delta \to 0+} \frac{i}{2\pi} \int d\omega' e^{i\omega'\delta} G(\mathbf{r},\mathbf{r}';\omega+\omega') W(\mathbf{r},\mathbf{r}';\omega') \qquad \text{GW}$$
Self energy Green's function Screened interaction

Skoltech

GW approximation

- Heavier than DFT/LDA (e.g. CPU time x100...x1000)
- Start from DFT calculation, then can be one-shot (GW@LDA) or self-consistent (SCGW)
- SCGW "Gold standard" (within 0.1...0.3eV), but GW@LDA is often fine

Material properties from total energy derivatives : phonons

Changing atomic positions

Born-Oppenheimer approximation ...

Phonon frequencies from force constants

Matrix of interatomic force constants :

$$C_{\kappa\alpha,\kappa'\alpha'}(a,a') = \frac{\partial^2 E_{BO}}{\partial R^a_{\kappa\alpha} \partial R^{a'}_{\kappa'\alpha'}}$$

Fourier Transform (using translational invariance) :

$$\tilde{C}_{k\alpha,k'\alpha'}(\vec{q}) = \sum_{a'} C_{k\alpha,k'\alpha'}(0,a') e^{i\vec{q}\cdot\vec{R}^a}$$

Computation of phonon frequencies and eigenvectors = solution of generalized eigenvalue problem

How to get second derivatives of the energy ? Density Functional Perturbation Theory...

Skoltech

Challenges for periodic materials ?

In addition of being able to compute derivatives of BO energy :

Treating phonons of different wavelengths ? (Not only periodic ones)

Treating electric field ? Electric field => linear potential, incompatible with periodicity

Even for phonons at zero wavevector (Gamma), treating LO-TO splitting (longitudinal optic – transverse optic)

Density-functional perturbation theory (DFPT)

Basic equations in DFT

Solve self-consistently Kohn-Sham equation

$$\begin{cases} \hat{H} | \boldsymbol{\psi}_{n} \rangle = \boldsymbol{\varepsilon}_{n} | \boldsymbol{\psi}_{n} \rangle \\ \hat{H} = \hat{T} + \hat{V} + \hat{V}_{Hxc}[n] \\ n(\vec{r}) = \sum_{n}^{occ} \boldsymbol{\psi}_{n}^{*}(\vec{r}) \boldsymbol{\psi}_{n}(\vec{r}) \\ n(\vec{r}) = \sum_{n}^{occ} \psi_{n}^{*}(\vec{r}) \boldsymbol{\psi}_{n}(\vec{r}) \\ \delta_{mn} = \langle \boldsymbol{\psi}_{m} | \boldsymbol{\psi}_{n} \rangle \text{for m, n } \in \text{ occupied set} \end{cases}$$
or minimize
$$E_{el} \{ \boldsymbol{\psi} \} = \sum_{n}^{occ} \langle \boldsymbol{\psi}_{n} | \hat{T} + \hat{V} | \boldsymbol{\psi}_{n} \rangle + E_{Hxc}[n]$$
What is \hat{V} ?
$$\hat{V}(\vec{r}) = \sum_{n} - \frac{Z_{\kappa}}{|\vec{r} - \vec{R}_{\kappa}^{n}|}$$

Basic equations in DFPT

Solve self-consistently Sternheimer equation

$$(\hat{H}^{(0)} - \varepsilon_{n}^{(0)}) |\psi_{n}^{(I)}\rangle = - (\hat{H}^{(I)} - \varepsilon_{n}^{(I)}) |\psi_{n}^{(0)}\rangle \qquad 0 = \langle \psi_{m}^{(0)} |\psi_{n}^{(I)}\rangle \text{ for } m \in \text{ occupied set}$$

$$\varepsilon_{n}^{(I)} = \langle \psi_{n}^{(0)} | \hat{H}^{(I)} | \psi_{n}^{(0)}\rangle \\ \hat{H}^{(I)} = \hat{V}^{(I)} + \int \frac{\delta^{2} E_{Hxc}}{\delta \rho(r) \delta \rho(r')} n^{(I)}(r') dr' \qquad \hat{H}^{(1)} \qquad \psi_{n}^{(1)}(\mathbf{r})$$

$$n^{(I)}(\vec{r}) = \sum_{n}^{occ} \psi_{n}^{(I)*}(\vec{r}) \psi_{n}^{(0)}(\vec{r}) + \psi_{n}^{(0)*}(\vec{r}) \psi_{n}^{(I)}(\vec{r}) \qquad n^{(1)}(\mathbf{r})$$

or minimize

$$E_{el}^{(2)} \left\{ \boldsymbol{\psi}^{(1)}; \boldsymbol{\psi}^{(0)} \right\} = \sum_{n}^{occ} \left\langle \boldsymbol{\psi}_{n}^{(1)} \middle| \hat{H}^{(0)} - \varepsilon_{n}^{(0)} \middle| \boldsymbol{\psi}_{n}^{(1)} \right\rangle + \left\langle \boldsymbol{\psi}_{n}^{(1)} \middle| \hat{V}^{(1)} \middle| \boldsymbol{\psi}_{n}^{(0)} \right\rangle \\ + \left\langle \boldsymbol{\psi}_{n}^{(0)} \middle| \hat{V}^{(1)} \middle| \boldsymbol{\psi}_{n}^{(1)} \right\rangle + \left\langle \boldsymbol{\psi}_{n}^{(0)} \middle| \hat{V}^{(2)} \middle| \boldsymbol{\psi}_{n}^{(0)} \right\rangle \\ + \frac{1}{2} \iint \frac{\delta^{2} E_{Hxc}}{\delta \rho(\vec{r}) \delta \rho(\vec{r}')} \mathbf{n}^{(1)}(\vec{r}) \mathbf{n}^{(1)}(\vec{r}') d\vec{r} d\vec{r}'$$

What is $\hat{V}^{(1)}$, $\hat{V}^{(2)}$?

The potential and its 1st derivative

Derivative with respect to $R^{a}_{\kappa\alpha}$

$$V^{(0)}(\vec{r}) = \sum_{a\kappa} -\frac{Z_{\kappa}}{\left|\vec{r}\cdot\vec{R}_{\kappa}^{a}\right|}$$
$$V^{(1)}(\vec{r}) = \frac{\partial V(\vec{r})}{\partial R_{\kappa,\alpha}^{a}} = \frac{Z_{\kappa}}{\left|\vec{r}\cdot\vec{R}_{\kappa}^{a}\right|^{2}} \cdot \frac{\partial \left|\vec{r}\cdot\vec{R}_{\kappa}^{a}\right|}{\partial u_{\kappa,\alpha}^{a}} = -\frac{Z_{\kappa}}{\left|\vec{r}\cdot\vec{R}_{\kappa}^{a}\right|^{3}} \cdot \left(\vec{r}\cdot\vec{R}_{\kappa}^{a}\right)_{\alpha}$$

Generalisation to pseudopotentials can be worked out ...

Collective displacement with wavevector \vec{q}

$$V_{\vec{q},\kappa,\alpha}^{(1)}(\vec{r}) = \sum_{a} e^{i\vec{q}\vec{R}_{a}} \frac{\partial V(\vec{r})}{\partial R_{\kappa,\alpha}^{a}}$$

Factorization of the phase

Suppose unperturbed system periodic $V^{(0)}(\vec{r}+\vec{R}_a) = V^{(0)}(\vec{r})$

If perturbation characterized by a wavevector : $V^{(l)}(\vec{r}+\vec{R}_a) = e^{i\vec{q}\cdot\vec{R}_a} V^{(l)}(\vec{r})$

all responses, at linear order, will be characterized by a wavevector :

Now, define related periodic quantities

 $\overline{\mathbf{n}}^{(l)}(\vec{r}) = e^{-i\vec{q}\cdot\vec{r}} \mathbf{n}^{(l)}(\vec{r}) \qquad u^{(l)}_{m,\vec{k},\vec{q}}(\vec{r}) = (N\Omega_0)^{l/2} e^{-i(\vec{k}+\vec{q})\vec{r}} \Psi^{(l)}_{m,\vec{k},\vec{q}}(\vec{r})$

In equations of DFPT, only these periodic quantities appear:

phases $e^{-i\vec{q}.\vec{r}}$ and $e^{-i(\vec{k}+\vec{q})\vec{r}}$ can be factorized

Treatment of perturbations incommensurate with unperturbed system periodicity is thus mapped onto the original periodic system.

The materials project: >1500 ABINIT phonon band structures

Materials Project >1500 ABINIT phonon band structures

G. Petretto, et al, Scientific Data. 5, 180065 (2018)

Materials Project >1500 ABINIT phonon band structures

http://materialsproject.org

Materials Project >1500 ABINIT phonon band structures

http://materialsproject.org

Effects of the electron-phonon interaction

T-dependence of electronic/optical properties

Phys. Rev. B 30, 1979 (1984)

- peaks shift in energy

- peaks broaden with increasing

temperature : decreased electron lifetime

M. Cardona, Solid State Comm. 133, 3 (2005)

- even at 0K, vibrational effects are

important, due to Zero-Point Motion

(DFT or beyond) calculations !

Usually, not included in first-principles

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete & XG, J. Chem. Phys. 143, 102813 (2015)

G₀**W**₀ + self-consistency + vertex (+e-h)...?

	scGW	scGW	EXP	
	RPA	e-h		
Ge	0.95	0.81	0.74	
Si	1.41	1.24	1.17	
GaAs	1.85	1.62	1.52	
SiC	2.88	2.53	2.40	
CdS	2.87	2.39	2.42	
AIP	2.90	2.57	2.45	
GaN	3.82	3.27	3.20	
ZnO	3.8	3.2	3.44	
ZnS	4.15	3.60	3.91	
С	6.18	5.79	5.48	
BN	7.14	6.59	≈6.25	
MgO	9.16	8.12	7.83	
LiF	15.9	14.5	14.20	
Ar	14.9	13.9	14.20	
Ne	22.1	21.4	21.70	

scGW RPA vs EXP Diff. 0.1eV ... 1.4 eV

scGW + e-h is even better ... Remaining discrepancy 0.1 eV ... 0.4 eV

From Shishkin, Marsman, Kresse, PRL 99, 246403 (2007)

Due to phonons, at least partly !

Non-adiabatic AHC theory vs experiment

Skoltech

Band gap : theory vs experiment

Miglio et al, npj Computational Materials 6:167 (2020)

 $E_{g,exp}$.7 1.2 1.5 2.4 2.4 2.5 3.2 3.4 3.9 5.5 6.3 7.7 (eV)

Skoltech

Band gap : theory vs experiment

Miglio et al, npj Computational Materials 6:167 (2020)

 $E_{g,exp}$.7 1.2 1.5 2.4 2.4 2.5 3.2 3.4 3.9 5.5 6.3 7.7 (eV)

Skoltech

Band gap : theory vs experiment

Miglio et al, npj Computational Materials 6:167 (2020)

 $E_{g,exp}$.7 1.2 1.5 2.4 2.4 2.5 3.2 3.4 3.9 5.5 6.3 7.7 (eV)

Skoltech

Electron mobility

Electron-phonon beyond Fröhlich: dynamical quadrupoles in polar and covalent solids Brunin et al, Phys. Rev. Lett. 125, 136601 (2020).

Silicon

FIG. 3. Error on the single-phonon-mode limited mobility when the quadrupole interaction is not correctly treated in Si, GaP, and GaAs, for acoustic (blue) and optical (green) modes. The error on the total mobility is given in black.

ABINIT Impact

ABINIT bibliometry (as of Nov 2021)

Comput. Mat. Science 25, 478 (2002) - 16 authors. 2649 citations

Z. Kristallogr. <u>220</u>, 558 (2005) – 20 authors. 1111 citations

Comp. Phys. Comm. <u>180</u>, 2582 (2009) – 33 authors. 2005 citations

1. Comp. Phys. Comm. <u>205</u>, 106 (2016) – 55 authors. 434 citations

+ Recent publication about ABINIT : Comp. Phys. Comm. <u>248</u>, 107042 (2020) – 53 authors J. Chem. Phys. <u>152</u>, 124102 (2020) – 43 authors

Wrap-up

+ ABINIT : open source, many capabilities, well documented, well tested, strong on phonon and electron-phonon properties

+ >1500 phonon band structures available on the Materials project

+ Temperature-dependent electronic structure. Zero-point correction needed for high-quality computations.

Repetitions: