Computational Chemistry and Materials Modeling

Lecture 7 Tight-binding and semiempirical approaches

Sergei Tretiak, Andriy Zhugayevych

November 19, 2021

Outline

- Methodology
- Non-self-consistent methods (wrt e-e interaction mean field)
 - Tight binding (TB) methods
 - Effective many-body Hamiltonians
- Self-consistent methods
 - Density functional tight binding (DFTB)
 - Semiempirical methods

Reminder: The electronic structure problem

$$\left[-\frac{1}{2}\sum_{i}\nabla_{i}^{2}-\sum_{iA}\frac{Z_{A}}{r_{iA}}+\sum_{i>j}\frac{1}{r_{ij}}\right]\psi_{e}(\mathbf{r};\mathbf{R})=E_{e}\psi_{e}(\mathbf{r};\mathbf{R})$$

Electrons interacting via Coulomb potential in electrostatic field of nuclei

Problem 1 – one-electron problem: use finite basis set (atomic-like orbitals) STO/GTO or plane waves)

Problem 2 – many-body problem: use mean field (HF, DFT, TDDFT) and perturbation theories (MP2, CI, CC) in Fock space (basis of Slater determinants)

Method

Explicit e-correlations

Ab initio (MP2, CI, CAS-CI, CC-EOM)

Density Functional (DFT, TDDFT)

Semiempirical (AM1, PM7, ZINDO)

Tight-binding (Huckel, Frenkel, DFTB)

All (depends on level of theory) Dynamic only

Coulomb, exchange, static

No

One-electron (full e-energy is inaccurate)

Exact

Wave-function

(for given basis set)

(a single-det. "fit" to e-density)

(variationally optim. single-det.)

Kohn-Sham

Hartree-Fock

Cost (PC)

Large (≥10 electrons)

Significant *(*≤1000 atoms*)*

Low (≤10 000 atoms)

Approach MM (>10 000 atoms)

Methodology: reducing 1e&MB basis

- Many codes use all-electron basis
- 1) Reduce number of electrons
- Pseudopotentials
- 2) Reduce number of one-electron orbitals but fit the model Hamiltonian(geometry), total energy(geometry)
- Semiempirical NDDO
- SCC-DFTB small electron density fluctuations
- Many-body basis is also reduced by neglecting 3c/4c integrals
- 3) No SCF in addition (no explicit ee-interaction) \rightarrow nontransferable
- TB no reliable implementations for accurate total energy
- Effective Hamiltonian small geometry deviations
- Coarse graining rigid fragments

Parameterization is the bottleneck of fitted models

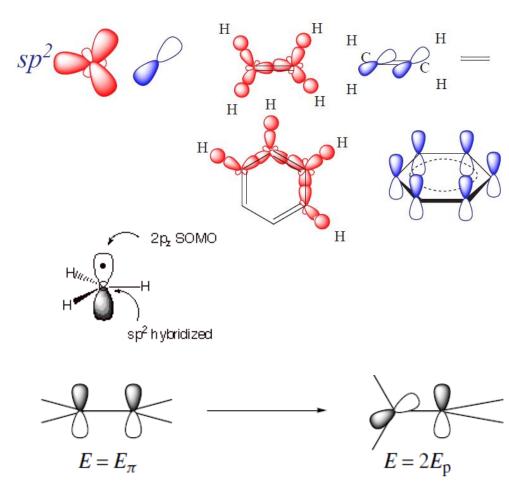
Historical TB models

- Huckel model of π-conjugated hydrocarbons
- PPP model of π-conjugated hydrocarbons
- SSH model of polyacetylene
- Slater-Koster parameters for semiconductors

The Huckel approximation

An example of tight-binding Hamiltonian, first constructed by Erich Huckel in 1930 for aromatic hydrocarbons

- 1) Only π -orbitals (one per carbon, the blue color) are considered
- 2) The orbitals are orthogonal $S_{ij} = \delta_{ij}$
- 3) Diagonal resonance term $H_{ii}=\alpha$ is derived from the ionization potential of methyl radical.
- 4) Off-diagonal nearest neighbor resonance terms are also derived from experimental data: $E_p = \alpha$ and $E_{\pi} = \alpha + 2\beta$
- 5) Not nearest-neighbor resonance interactions are neglected!



Very simple model correctly describing physics of π -conjugated molecules and solids

Huckel approach to hydrocarbons

pc

The allyl system, following Cramer

The secular equation:

$$\begin{vmatrix} \alpha - E & \beta & 0 \\ \beta & \alpha - E & \beta \\ 0 & \beta & \alpha - E \end{vmatrix} = 0$$

Eigenvalues correspond to bonding, non-bonding and anti-bonding molecular orbitals:

$$E = \alpha + \sqrt{2}\beta, \quad \alpha, \quad \alpha - \sqrt{2}\beta$$

The bonding (lowest energy) MO

$$\varphi_1 = \frac{1}{2}\mathbf{p}_1 + \frac{\sqrt{2}}{2}\mathbf{p}_2 + \frac{1}{2}\mathbf{p}_3$$

2 electrons per orbital starting from the bottom!

 π –bonding energy of the system: allyl cation (2e) $2(\alpha + \sqrt{2}\beta)$ allyl radical (3e) $2(\alpha + \sqrt{2}\beta) + \alpha$ allyl anion (4e) $2(\alpha + \sqrt{2}\beta) + 2\alpha$

φ₂ = α $\alpha + \sqrt{2\beta}$

Figure 4.2 from Cramer: Huckel MOs for the allyl system

Ε

PPP (Pariser-Parr-Pople) model

Simple model with ee-interaction (1953)

Again, only π -electrons are considered, but let add to the SSH form simple Coulomb interactions (only diagonal elements in the tetradic matrix V)

$$\langle mk | nl \rangle = V_{mn} \delta_{mk} \delta_{nl}$$

$$V_{nm} = \frac{U}{\sqrt{1 + (r_{nm}/a_o)^2}} \quad \text{Ohno form}$$

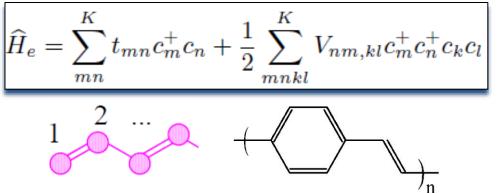
$$t_{nn} = \sum_m V_{nm} \qquad \text{Diagonal terms}$$

$$t_{n,n\pm 1} = \beta_0 - \beta_1 l_n \quad \text{Transfer integrals}$$

$$V(\bar{\rho})_{mn} = -V_{mn} \bar{\rho}_{mn} + 2\delta_{mn} \sum_l V_{ml} \bar{\rho}_{ll}$$

$$\hat{\mu}_{nm} = e z_n \delta_{nm} \quad \text{Dipole matrix}$$

$$J.A. Pople and W. Kohn: Nobel Prize in chemistry (1998) for quantum chemistry (DFT and electronic structure)$$



- Conceptually simple – only 1 basis function per atom (good parameterization exist at least for C, N and O);

- Electron-electron interactions are accounted for at some qualitative level;

- No σ -bonding, no optimal geometries;

- No analytical and numerical solutions exist for solving Schrodinger equation – manyelectron effects!

Within Hartree-Fock approximation, diagonalization of the Fock operator includes iterative numerical SCF procedure;
Correlated excited states can be further obtained using subsequent CI calculations

SSH (Su-Schrieffer-Heeger) model

Simple model with ep-interaction (1979)

Solitons in conducting polymers

A. J. Heeger S. Kivelson J. R. Schrieffer W.-P. Su Reviews of Modern Physics, Vol. 60, No. 3, July 1988

 $H_{\rm SSH} = H_{\pi} + H_{\pi-\rm ph} + H_{\rm ph}$

 $H_{\pi} = -t_0 \sum_{n,s} \left(c_{n+1,s}^{\dagger} c_{n,s} + c_{n,s}^{\dagger} c_{n+1,s} \right)$

$$\leftarrow$$
 Huckel part for π -electrons

 $H_{\pi\text{-ph}} = \alpha \sum_{n=1}^{\infty} (u_{n+1} - u_n)(c_{n+1,s}^{\dagger} c_{n,s} + c_{n,s}^{\dagger} c_{n+1,s}) \quad \leftarrow \text{Electron-phonon coupling}$

 $H_{\rm ph} = \sum p_n^2 / 2M + K / 2 \sum (u_{n+1} - u_n)^2 \qquad \leftarrow \text{Phonon part}$

Solutions of the Hamiltonian in a form of Bloch functions:

$$c_{ks} = (N^{-1/2}) \sum_{n,s} \exp(-ikna)c_{ns}$$

A.J. Heeger, A.J. MacDiarmid, H. Shirakawa: Nobel Prize in chemistry (2000) for discovery of conducting polymers

Diagonalized Hamiltonian:

 $\overbrace{}^{1}$

$$H(u) = \sum \left[\epsilon_k (c_{ks+}^{\dagger} c_{ks+} - c_{ks-}^{\dagger} c_{ks-}) + \Delta_k (c_{ks+}^{\dagger} c_{ks-} + c_{ks-}^{\dagger} c_{ks+}) \right] + 2NKu^2$$

$$\Delta_k = 4\alpha u \sin ka \quad \text{Energy gap parameter}$$

$$\varepsilon_k = 2t_0 \cos ka$$
 Band energy

Tight binding for solids: NRL developments

- Parameterized for
 - band structure [Phys Rev 94, 1498 (1954)]
 - "band energy = total energy" calculations [Phys Rev B 50, 14694 (1994)]
- Transferable between different structures of the same compound

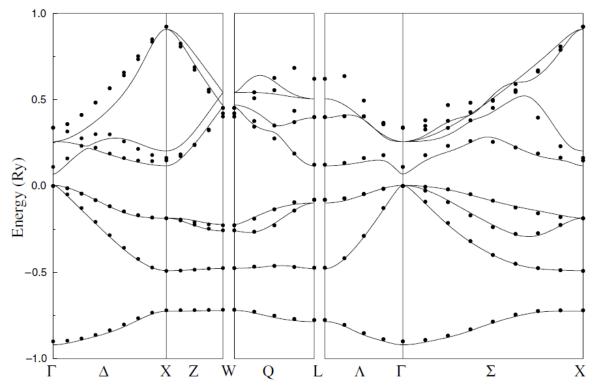


Figure 3. Comparison of an empirical pseudopotential band structure of GaAs (dots) to the band structure obtained by SK parametrization (solid curve).

D A Papaconstantopoulos, Handbook of the band structure of elemental solids (Springer, 2015)

Orthogonal vs nonorthogonal

Orthogonal

- More convenient for orbital analysis and 2nd quantization
- Majority of theoretical models, MOPAC
- NBO and usually LMO

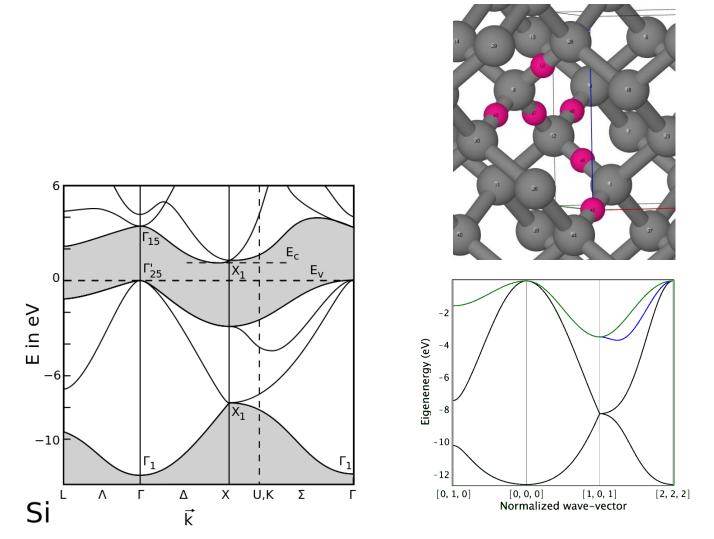
Nonorthogonal

- More compact in space, more transferable
- NRL tight-binding, DFTB

Conversion

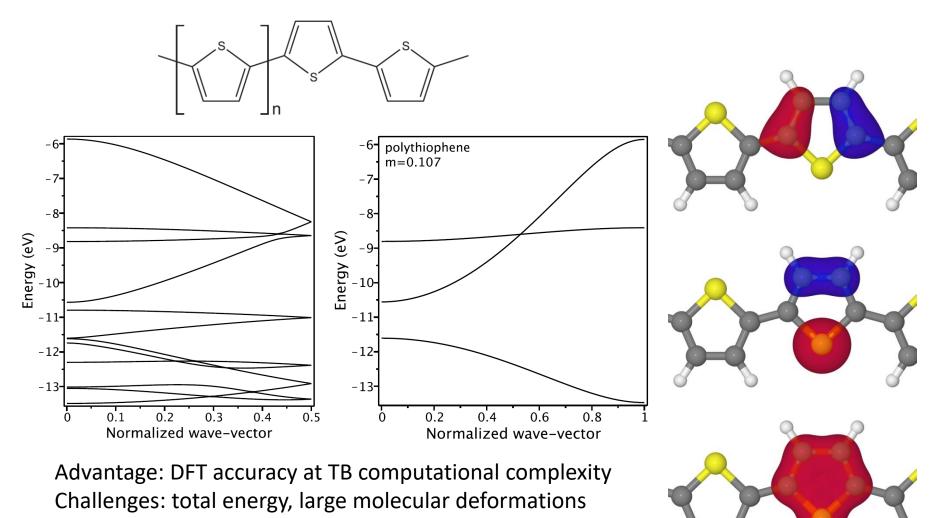
• Symmetric (Lowdin) orthogonalization $H' = S^{-1/2}HS^{-1/2}$ nearest neighbor \rightarrow exponentially fading transfer integrals

Example: 6-parameter model of Si VB



Also can be used for band structure if calculation of each k-point is demanding – extrapolation in real space is often much more efficient than interpolation in k-space

Coarse graining for molecular systems



Complex polymer: Chem Sci 8, 1146 (2017) Complex molecular solid: Chem Mater 33, 966 (2021)

Holstein-Peierls Hamiltonian

Ann Phys 8, 32 (1959), J Chem Phys 83, 1854 (1985)

$$\sum_{ij} H_{ij}^{1p} c_i^{\dagger} c_j + \sum_{\alpha} \hbar \omega_{\alpha} \left(b_{\alpha}^{\dagger} b_{\alpha} + \frac{1}{2} \right) + \sum_{ij\alpha} \hbar \omega_{\alpha} g_{ij\alpha} \left(b_{\alpha}^{\dagger} + b_{\alpha} \right) c_i^{\dagger} c_j$$

here c_i – quasiparticles (excitons, holes etc.) described by coarse-grained Hamiltonian, b_{α} – normal modes or phonons, $H_{ij}^{1p} = \delta_{ij} \varepsilon_i + (1 - \delta_{ij}) t_{ij}$,

 ε_i – onsite energy, t_{ij} – transfer integral, $g_{ij\alpha}$ – electron-phonon coupling (local for i = j, nonlocal otherwise)

Approximations:

- mean field approximation for electrons
- linear electron-phonon coupling
- harmonic approximation for atomic motion

Most of many-body Hamiltonians are tractable only in the minimal basis

Discussion

- 1. Why the same values of TB parameters cannot be used for different states (neutral, charged, triplet, excited)?
- 2. In which cases the same set of geometry-dependent TB parameters can be used (cannot be used) to compare different polymorphs of the same material? Give examples.
- 3. What will be the smallest basis set for CH4 molecule?
- 4. Write the simplest TB Hamiltonian for VB of CH4 molecule. Write its basis set in terms AOs of C and H.

Self-consistent methods

• Density functional tight binding (DFTB)

(minimal AO basis + simplified orbital-free density functional, parameterized with local functional and empirical dispersion)

Semiempirical methods

(minimal AO basis + neglecting majority of multicenter integrals, parameterized for HF energy including support of fractional occupations and CI wave-function)

DFTB – Density Functional Tight Binding

• Tight-binding + simplified (orbital-free) density functional

$$E = \sum_{a} f_{a} \sum_{\mu\nu} c_{\mu}^{a*} c_{\nu}^{a} H_{\mu\nu}^{0} + \frac{1}{2} \sum_{IJ} \gamma_{IJ}(R_{IJ}) \Delta q_{I} \Delta q_{J} + \sum_{I < J} V_{rep}^{IJ}(R_{IJ})$$
$$H_{\mu\nu} = H_{\mu\nu}^{0} + \frac{1}{2} S_{\mu\nu} \sum_{K} (\gamma_{IK} + \gamma_{JK}) \Delta q_{K}, \quad \mu \in I \quad \nu \in J$$

- Parameterized by higher level of theory (DFT)
- Self-consistent (SCC DFTB) wrt electronic density fluctuations
- 1. P Koskinen, V Makinen, Density-functional tight-binding for beginners, Comp Mater Sci 47, 237 (2009)
- 2. <u>DFTB+</u>, a software package for efficient approximate density functional theory based atomistic simulations, J Chem Phys 152, 124101 (2020)
- <u>GFN2-xTB</u> An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions, J Chem Theory Comput 15, 1652 (2019)

DFTB⁺ Density Functional based Tight Binding (and more)

	Features					
About DFTB+						
• Features	The latest stable release has among others, the following capabilities:					
Download	Non-scc and scc calculations for clusters and periodic systems (with arbitrary K-point sampling)					
Documentation	Spin polarized calculations with colinear and non-colinear spin					
	 Dispersion correction (D3, D4, many-body and Tkatchenko-Scheffler) 					
 Contact & Support 	3rd order correction and other DFTB3-features					
 Contribute 	Ability to treat f-electrons					
Developer pages	LDA+U (DFTB+U) extension					
	Spin orbit coupling					
	Pseudo self interaction correction					
	 Various types of external electrical fields, QM/MM coupling via fields 					
	Time dependent DFTB in the Casida-formulation					
	 Range separated ground state calculations and excited state calculations for spin free singlet systems 					
	 Real time electronic and coupled electron-ion Ehrenfest dynamics 					
	 REKS (spin-Restricted Ensemble Kohn-Sham) calculations for ground and low-lying exited states 					
	Delta DFTB for lowest singlet excitated state					
	• Electron transport calculation via non-equilibrium Greens function technique (also for systems with colinear spin)					
	Phonon transport calculations					
	 Particle-particle random-phase approximation (pp-RPA) for calculation of suitable excitations 					
	Extended Lagrangian Born-Oppenheimer MD (XLBOMD)					
	Several implicit solvation models					
	 Helical geometries supported for non-SCC calculations 					
	Geometry and lattice optimisation					
	Vibrational frequency calculation.					
	 Molecular dynamics (NVE, NPH, NVT and NPT ensambles) 					
	 Support for meta-dynamics in MD via the Plumed library, 					
	MPI- and OpenMP parallelisation					
	Usage of GPU for diagonalisation					
	Using DFTB+ via sockets					

- DFTB+ can be compiled as a library and linked to simulation packages.
- Automatic code validation (autotest system)
- · User friendly, extensible input format (HSD)
- Additional tool for generating cube files for charge distribution, molecular orbitals, etc. (Waveplot)

DFTB: approaching DFT accuracy at MLIP speed

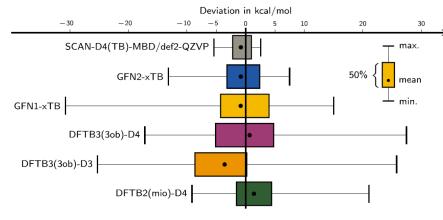
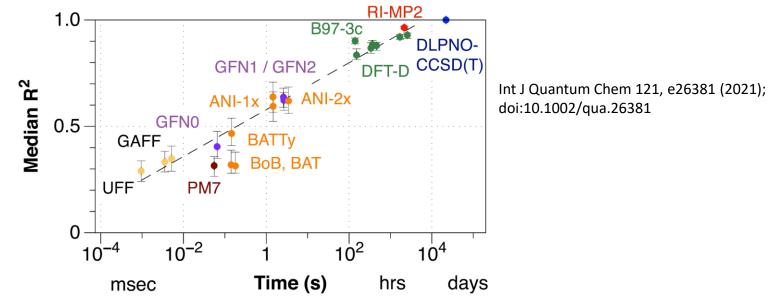


FIG. 1. Performance of different dispersion corrected tight binding methods on the S30L benchmark set, and the values for SCAN-D4 are taken from Ref. 65.

152, 124101-6

J. Chem. Phys. 152, 124101 (2020); doi: 10.1063/1.5143190



DFTB is the best universal approach to systems of 1000s of atoms

NDDO – foundation of semiempirical methods

Main idea – minimize basis \rightarrow 1) One AO per valence electron + polarization orbitals 2) NDDO = Neglect of Diatomic Differential Overlap: $\overline{\phi_{\alpha}}(x)\phi_{\alpha'}(x)\overline{\phi_{\beta'}}(y)\phi_{\beta}(y) = 0$

$$\widehat{H}_{e} = \sum_{mn}^{K} t_{mn} c_{m}^{+} c_{n} + \frac{1}{2} \sum_{mnkl}^{K} V_{nm,kl} c_{m}^{+} c_{n}^{+} c_{k} c_{l}$$

Calculating and storing all V_{nmkl} is computationally demanding

if either α and α' or β and β' do not belong to one center.

- Approximation leading to a neglect of many integrals (all 3c/4c-integrals, and 2c-exchange), partially compensated by fitting of the rest of terms to the reference data!
- Basis set is considered orthogonal by construction.
- Usually limited to Hartree-Fock and post-HF (MOPAC).

Example: MNDO, AM1, PM3, PM7 methods $h_{\mu\nu} = \langle \mu_{\rm A} | \mathbf{h} | \mathbf{v}_{\rm B} \rangle = \delta_{\mu\nu} U_{\mu} - \sum_{a \neq A}^{N_{\rm nuclei}} Z_a' \langle \mu_{\rm A} \mu_{\rm A} | \mathbf{v}_{\rm A} \mathbf{v}_{\rm A} \rangle \quad \text{t-term!}$ $U_{\mu} = \langle \mu_{\rm A} | -\frac{1}{2} \nabla^2 - \mathbf{V}_{\rm A} | \mathbf{v}_{\rm A} \rangle$ $\langle \mu_{\rm A} | \mathbf{h} | v_{\rm B} \rangle = \frac{1}{2} S_{\mu\nu} (\beta_{\mu} + \beta_{\nu})$ $\langle ss | ss \rangle = G_{ss}$ V-term $\langle sp | sp \rangle = G_{sp}$ +~22 parameters for a $\langle ss | pp \rangle = H_{sp}$ composing V-term single $\langle pp | pp \rangle = G_{pp}$ for 2 centers! center $\langle pp' | pp' \rangle = G_{p2}$

See http://openmopac.net/manual/parameters.html

How accurate is NDDO?

Exact for 2c2e problem and is used in most of quantum chemistry and condensed matter theory models (PPP, extended Hubbard)

The full Hamiltonian matrix is given by

$$H = \begin{pmatrix} 2\varepsilon_1^0 + 2\Lambda_{121} + W_{11} & s\varepsilon_1^0 + s\Lambda_{121} + t^0 + W_{112} & s\varepsilon_1^0 + s\Lambda_{121} + t^0 + W_{112} & 2st^0 + W_{12}^{\text{ex}} \\ & \dots & \varepsilon_1^0 + \varepsilon_2^0 + \Lambda_{121} + \Lambda_{212} + W_{12} & 2st^0 + W_{12}^{\text{ex}} & s\varepsilon_2^0 + s\Lambda_{212} + t^0 + W_{122} \\ & \dots & & \dots & \varepsilon_1^0 + \varepsilon_2^0 + \Lambda_{121} + \Lambda_{212} + W_{12} & s\varepsilon_2^0 + s\Lambda_{212} + t^0 + W_{122} \\ & \dots & & \dots & & \dots & 2\varepsilon_2^0 + 2\Lambda_{212} + W_{22} \end{pmatrix}$$

This Hamiltonian can be written in a compact ZDO form

$$H = \begin{pmatrix} 2\varepsilon_1 + U_1 & s\varepsilon_1 + t_{12} & s\varepsilon_1 + t_{12} & 2st_{12} \\ \dots & \varepsilon_1 + \varepsilon_2 + V_{12} & 2st_{12} & s\varepsilon_2 + t_{12} \\ \dots & \dots & \varepsilon_1 + \varepsilon_2 + V_{12} & s\varepsilon_2 + t_{12} \\ \dots & \dots & \dots & 2\varepsilon_2 + U_2 \end{pmatrix}$$

with the renormalized parameters

$$\begin{split} \varepsilon_1 &= \varepsilon_1^0 + \Lambda_{121} + \frac{2sW_{112} - W_{12}^{\text{ex}}}{2s^2}, \qquad U_1 = W_{11} - \frac{2sW_{112} - W_{12}^{\text{ex}}}{s^2}, \\ \varepsilon_2 &= \varepsilon_2^0 + \Lambda_{212} + \frac{2sW_{221} - W_{12}^{\text{ex}}}{2s^2}, \qquad U_2 = W_{22} - \frac{2sW_{221} - W_{12}^{\text{ex}}}{s^2}, \\ t_{12} &= t_{12}^0 + \frac{W_{12}^{\text{ex}}}{2s}, \qquad V_{12} = W_{12} + \frac{W_{12}^{\text{ex}} - sW_{112} - sW_{221}}{s^2} \end{split}$$

The semiempirical world in details

- Provides conceptually simple, compact and physically transparent Hamiltonian model;

- Parameterization is ALWAYS bound to the specific electronic structure level (e.g., Hartree-Fock approximation), but post-HF is meaningful

- Parameterization is subject to the fit to a reference data set;

- Semiempirical models cannot reproduce phenomena beyond their capacity (e.g. no Rydberg states);

- Generally good results are achieved only for the first and second rows elements (dynamic correlations with d-electrons are 'problematic');

- Semiempirical models are nice 'toys' – numerically easy and simple, but still true 'atomistic' approaches – always a good starting point for any electronic structure simulations ('testing the ground'). - Old models (currently obsolete): CNDO, INDO/1, INDO/2, NDDO

- Older models for ground state properties: MNDO, AM1, PM3

- Newer models for ground state properties: RM1, PM6, PM7 (variations with dispersive corrections)

- Older model for excited state properties: INDO/S=ZINDO

- Parameterization of d-electrons (so-so performance): MNDO-d, AM1-d, PM3-d, INDO/S, SINDO1.

- Semiempirical codes: MOPAC, AMPAC, SQM (MNDO...PM6), ZINDO, PySeQM. Also implemented in Gaussian, Turbomole, GAMESS...

Performance of PM7 semiempirical method

Heat of formation $\Delta H_{\rm f}({\rm molecule}) = E_{\rm elec}({\rm molecule}) - \sum_{\rm elec}^{M_{\rm atoms}} E_{\rm elec}({\rm atoms}) - \sum_{\rm elec}^{M_{\rm atoms}} \Delta H_{\rm f}({\rm atoms})$

Table 3.1 (from Jensen) Average heat of formation error (kJ/mol)

Compounds	Number of compounds	MNDO	AM1	PM3
H, C, N, O	276	77	44	33
F	133	352	207	47
Si	78	96	87	59
All normal valent	607	102	62	47
Hypervalent	106	437	261	72
All	713	193	116	49

1 eV = 23.0606 kcal/mol 1kcal/mol = 4.184kJ/mol kT(300K) ~ 25meV

•	• •		• •
Bond to:	MNDO	AM1	PM3
Н	0.015	0.006	0.005
С	0.002	0.002	0.002
Ν	0.015	0.014	0.012
0	0.017	0.011	0.006
F	0.023	0.017	0.011
Si	0.030	0.019	0.045

Table 3.2 (from Jensen) Average errors in bond distances (Å)

See http://openmopac.net/PM7 accuracy/PM7 accuracy.html

Usage 1: Static e-e correlations

Use for preliminary analysis of the wave-function and to find low-energy states

Table: Use of OPEN(n, m)						
UHF Keywords	RHF Keywords	Example Number of M.O.s No. of Elec			State	
MS=1	OPEN(2,2)	Twisted Ethylene 2		2	³ A ₂	
OPEN(1,2)	OPEN(1,2)	O_2^+	2	1	$^{2}\pi_{g}$	
MS=-0.5 OPEN(2,3)	OPEN(5,3)	$\mathrm{CH_4}^+$	3	5	² T ₂	
MS=1.5	OPEN(3,3)	$[Cr^{III}F_6]^{3-}$	3	3	$^{4}A_{2g}$	
MS=2.5	OPEN(5,5)	[Mn ^{II} (H2O) ₆] ²⁺	5	5	⁶ A ₁	
MS=-0.5 OPEN(2,3)	OPEN(5,3)	[Fe ^{III} (CN) ₆] ³⁻	3	5	$^{2}T_{2g}$	

See http://openmopac.net/manual/open.html

Usage 2: Nonadiabatic molecular dynamics

J. Phys.: Condens. Matter 32 (2020) 073001

Topical Review

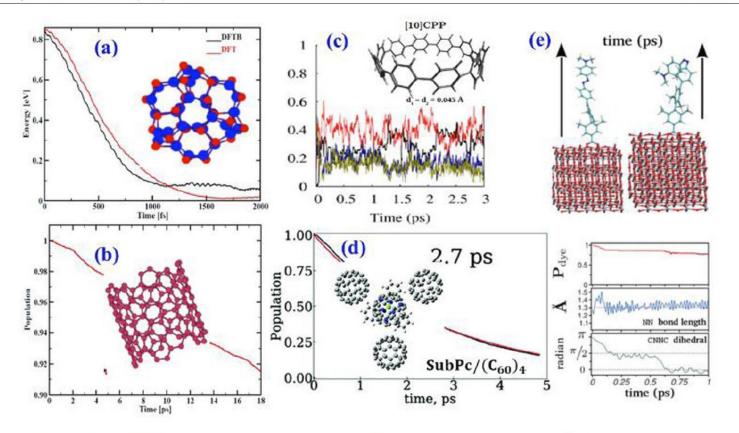


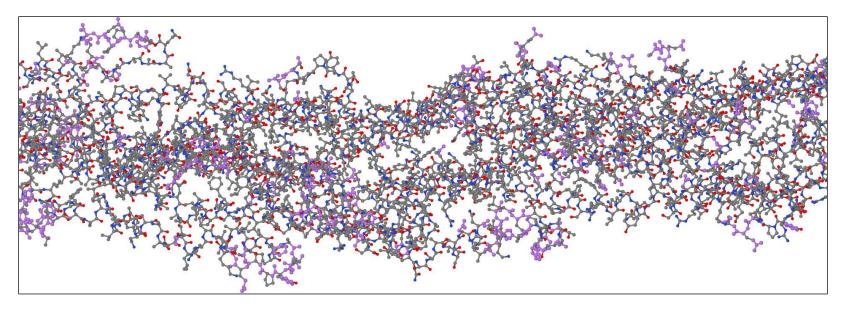
Figure 3. Examples of NA-MD methods for large systems that use DFTB, semiempirical, or semiempirical/molecular mechanics approaches. (a) and (b) DFTB+ is used with NBRA-based NA-MD (Pyxaid) to study the excited states relaxation dynamics in cadmium selenide nanocrystals (a) and carbon nanotubes (b). Adapted from [97], with permissions; Copyright (2016) American Chemical Society; (c) The LC-TD-DFTB approach combined with the general TSH method (Newton-X) enabled modeling the excited states dynamics of CPP. Adapted from [120], with permissions; Copyright (2017) American Chemical Society; (d) Combination of the semiempirical methods available in the GAMESS program with NBRA-based TSH (Libra) enabled studying charge transfer in extended molecular models of organic heterojunctions. Adapted from [133]. CC BY 3.0; (e) combination of EHT with molecular mechanics enabled TSH calculations with electron-nuclear back-reaction, which enabled modeling the photoinduced isomerization of azobenzene derivatives on semiconductor surfaces. Adapted from [135], with permissions; Copyright (2019) American Chemical Society.

DFTB/semiempircs is currently the only approach suitable for NAMD of materials/molecules

Usage 3: Large biomolecular system

Example:

Is there a conductive pathway through π -conjugated system?



MOPAC MOZYME PM7 calculations, 17000 atoms in PBC: Localization of all occupied MOs up to -11 eV is shown by violet color – there is no efficient conduction pathway

Adv Mater 27, 1908 (2015)

Historical example...

Role of sp³ carbon and 7-membered rings in fullerene annealing and fragmentation

Robert L. Murry, Douglas L. Strout, Gregory K. Odom & Gustavo E. Scuseria*

NATURE · VOL 366 · 16 DECEMBER 1993

Purpose: explore computationally energetics of intermediate species appearing during fullerene fragmentation and annealing, i.e. what happen after laser light breaks C-C bond(s) and how then molecule heals. **Methods used:** MNDO (semiempirics), SCF (ab initio), BLYP, LDA (DFT)

Notably, at that time, geometry optimizations of such large molecules were only possible at semiempirical level!

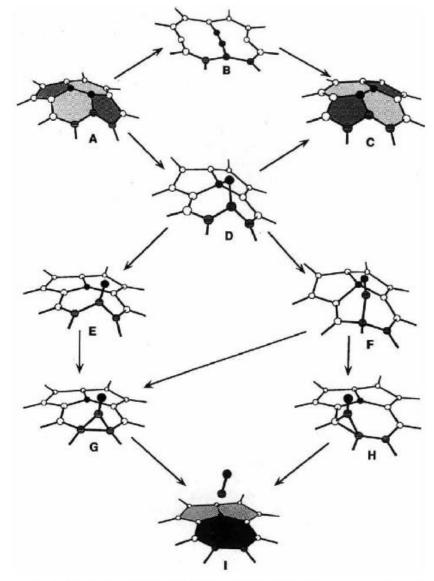


FIG. 1 The Stone–Wales rearrangement and its role in annealing and fragmentation. Atoms and polygons are shaded for ease in following

... Historical example continued...

Role of sp^3 carbon and 7-membered rings in fullerene annealing and fragmentation

Robert L. Murry, Douglas L. Strout, Gregory K. Odom & Gustavo E. Scuseria*

NATURE · VOL 366 · 16 DECEMBER 1993

	TABLE 1 Energetics of Stone–Wales annealing rearrangement for fullerene model systems					
Calculations demonstrate that	Barriers (eV)					
<i>'in plane' structure re-arrangements is 'more expensive'</i>			Ľ	ġ.	Æ	
energetically, compared to the			Minimum*		Extended†	
<i>'out-of-plane'</i> <i>transitions</i>	Method MNDO	Basis set	in-piane 8.6	sp ³ intermediate 5.9	In-plane 8.2	sp ³ intermediate 5.9
involving sp ³ configurations	SCF SCF LDA BLYP SCF LDA BLYP	2s1p 4s2p 4s2p 4s2p 4s2p1d 4s2p1d 4s2p1d	11.3 9.6 8.7 8.4 9.5 8.1 8.0	5.5 7.8 6.4 6.4 7.1 6.1 6.1	11.6 9.6 9.3 8.9 9.5 8.7 8.4	7.0 6.3 7.4 7.1 6.1 7.1 6.9

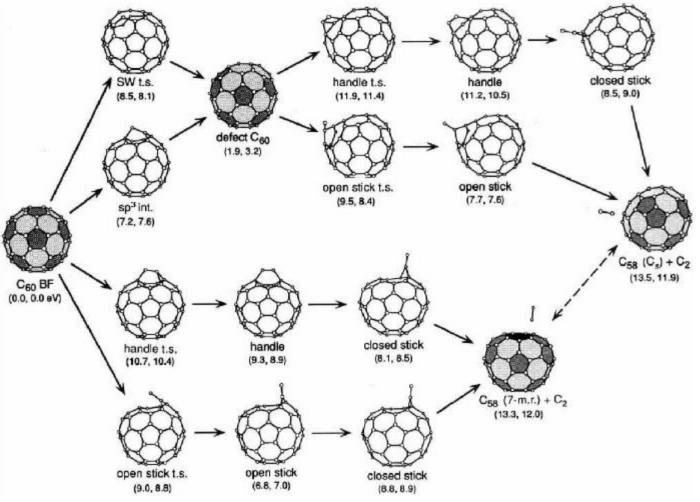
... Historical example continued

Role of sp³ carbon and 7-membered rings in fullerene annealing and fragmentation

Robert L. Murry, Douglas L. Strout, Gregory K. Odom & Gustavo E. Scuseria*

NATURE · VOL 366 · 16 DECEMBER 1993

Calculated map of fragmentation and annealing pathways after laser photodamage into stable structures.



Discussion

1. Why all 3c/4c integrals can be neglected? Which 2c integrals can be neglected and which cannot?

 $W_{ikjl} = \langle \varphi_i(x)\varphi_j(y)|W(x,y)|\varphi_k(x)\varphi_l(y)\rangle$

- 2. Why for dynamic correlations we prefer DFTB methods and for static correlations we use semiempirical methods?
- 3. Why we cannot use simple tight binding for biopolymers?
- 4. Why we cannot use simple tight binding for nonadiabatic molecular dynamics?