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What are the examples of crystals?
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● Metals and alloys

● Semiconductors

● Minerals (insulating)

● 2D materials



What is the main difference of crystals from molecules?

● Translational symmetry - the atomic structure is 
repeated infinitely in three dimensions

● The number of symmetries is limited
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Problem: How to represent the infinite system?

Evgraf Fedorov, 
mathematician, 
crystallographer and 
mineralogist
derived 230 
symmetry space 
groups The Symmetry of 
Regular Systems of 
Figures,1891



Fourier transform: functions of time
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The Fourier transform F of a function f(t) is a function F(ω) in frequency domain,
and is defined as:

Fourier transform of cos(ω0t):



Fourier transform: functions of space
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The Fourier transform F of a function f (r) is a function F (g) in g space domain: 
R

a1
a2

b2

b1



Brillouin zone and Wigner seitz cell 
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● Primitive cell - cell with minimal volume, infinite number of possibilities
● First Brillouin zone (BZ) is a primitive cell in reciprocal space with the symmetry of 

the reciprocal lattice
● Wigner-seitz cell - the primitive cell with the symmetry of the Bravais lattice



First BZ for FCC lattice
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● The reciprocal lattice for FCC lattice is BCC
● Г is the center of Brillouin zone
● High-symmetry directions are called with Greek letters (see here), high 

symmetry points with Latin 
● Fundamental domain of BZ is often called  irreducible Brillouin zone (IBZ)

https://en.wikipedia.org/wiki/Brillouin_zone


Understanding Brillouin zones
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First 27 BZ for 2D square lattice First 4 BZ for 3D lattices:

All BZ are of equal volume



Electrons in periodic potential of ions 
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where G is a set of vectors and the VG are 
Fourier coefficients 



Bloch theorem for periodic systems  
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● k - new quantum number, vector in reciprocal space!
● n  is band number from the solution of reduced spectral problem with PBC
● only one reciprocal cell -> finite volume problem
● eikr - invariant with respect k = k+G, where G is translation vector

Felix Bloch
Nobel prize in 
1952

Theorem: In periodic system, one-electron wavefunction 
can be chosen to be a plane wave times the periodicity of the 
Bravais lattice:



Plane wave basis set for periodic part, uk(r) 
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● In real crystal we do not 
expect too large energies

● Therefore we can omit 
plane waves with large G

● In VASP ENCUT 
parameter

● Important to perform all 
calculations at the same 
E-cut

● Check convergence!

G is translation vector of reciprocal lattice
The periodic part is a sum of plane waves

Typical Ecut of 500 eV corresponds to 0.5 Å distance in 
real space.

https://www.vasp.at/wiki/wiki/index.php/ENCUT


Bloch theorem for Kohn-Sham equations
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● In analogy to the particle in the box there are infinite number of 
solutions n, unk+G = unk where n is the number of band 
○ but now, number of occupied bands is finite  

● The energy of electron now is a function of k for each n, εn(k) - this is 
called band dispersion 

Kohn-Sham equations can be solved 
separately for each point at k-space



Convergence with respect to e-cut 
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● Make all calculations at fixed cut-off
● The absolute energy has little sense, use differences
● Check convergence for property of interest

Convergence of the energy cut-off for bcc Li and energy difference using the PBE functional and 
a 8x8x8 k-point grid for conventional cell.



Simple picture for band formation in quantum 
wells (Kronig-Penney model)
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Finite barrier:
small splitting in 
energy between 
states due to 
coupling

Infinite barrier 
between two wells:
degenerate states 

D. Snoke /Solid 
state physics

States with more 
nodes (shorter 
wavelength) will 
have higher
energy, while 
states with fewer 
nodes will have 
lower energy.



1D case, infinite chain of H atoms with 
non-interacting electrons
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a

At k = 0, also known as Г

At k = π/a, also known as X

a

a - interatomic distance, 𝜙 - atomic orbital

The same procedure for intermediate k values



Band structure for hydrogen chain
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Dronskowski

in-phase, bonding 
combination of all
atomic orbitals

out-of-phase, and the 
interaction is ultimately 
antibonding

nonbonding

First Brillouin zone in 1D case

= pi/api/2a



Example of band structure for graphene
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Glustion Fig D2

BZ and IBZ

one-dimensional 
cross-sections is the most 
common way to visualize 
bands

Change of energy along 
high-symmetry direction
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Example of band structure for silicon



Ground state and Fermi surface
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The ground state of N electrons is obtained by filling one-electron bands with energies εn(k) up to the 
Fermi energy.               Some bands are fully filled, the others are empty                

No Fermi surface for band gap 
materials! -> definition for metals

Case 1: The band is partially filled 
or overlapped 

Case 2: The band is either 
completely filled or empty 

Si



Density of states
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Cu [Ar] 4s1 3d10  FCC lattice with 1 atom             11 Kohn-Sham electrons

The parabolic behaviour 
in L-Г-K region 
resembles free electron 
gas, however it is 
interrupted by 
spaghetti-like d states

d

Fermi Surface
Kohn–Sham wavefunctions

dxy dz2

Significant differences 
between states across the 
Fermi surface.

The red discs are from the 
experimental 
angle-resolved 
photoemission data - The 
Kohn-Sham eigenvalues 
has some physical reality

from 
Giustino



Charge density
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for VASP users
plot CHGCAR file in VESTA

● Plot charge density difference for fixed atomic positions

Charge density for Silicon

https://cms.mpi.univie.ac.at/wiki/index.php/CHGCAR


Discussion
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● What is the difference of Brillouin zone from other primitive cells 
in the reciprocal space?

● Why do we need smearing of a Fermi-level?

● Why antisymmetric solution has higher energy compared to the 
symmetric one?

● What is the difference of real crystal from ideal periodic crystal?



k-point sampling
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● For continuous function very 
efficient integration can be done 
using only several k-points

● k-point grid N1xN2xN3 in 3D

Sholl p.54

Monkhorst-Pack - regular equispaced 
mesh 



Choosing k-points mesh
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How to choose N1,N2, N3?
Commonly the following rule of thumb applies: 
N1:N2:N3 = |b1|:|b2|:|b3|
where bi  are the reciprocal lattice vectors.

● for VASP k-points are provided in KPOINTS file
● For automatic generation use KSPACING tag
● check convergence up to k-spacing of 0.05 A-1!

○ k-spacing 0.5 A-1 risk of large errors

https://cms.mpi.univie.ac.at/wiki/index.php/KPOINTS
https://www.vasp.at/wiki/index.php/KSPACING


Convergence with respect to k-grid 
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K-point convergence of alpha-Cerium using the PBE functional and ENCUT=500 eV.
https://dannyvanpoucke.be/vasp-tutor-convergence-testing-en/



Smearing at Fermi level
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Discontinuity - very large number of k-points 
is needed to calculate integrals correctly 

● Smearing is needed to make function continuous, ISMEAR
● In VASP:  ISMEAR - chose method for smearing, SIGMA - the value of smearing
● Check smearing parameter!
● More k-points for metals, density < 0.15 A-1 (KSPACING)

Sholl, p. 60

Q?

https://www.vasp.at/wiki/wiki/index.php/ISMEAR
https://www.vasp.at/wiki/wiki/index.php/SIGMA


(Electronic) free energy functional
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When introducing the Fermi-Dirac distribution one effectively considers an equivalent system of 
non-interacting electrons at a temperature  T with electronic entropy S

In VASP three energies are 

provided:

● free energy    

TOTEN

● energy without 

entropy

● energy(sigma->0)

● Do not mix with 

thermodynamic free 

energy



Convergence with respect to k-points and smearing
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https://docs.quantumatk.com/manual/technicalnotes/occupation_methods/occupation_methods.html



Smearing methods
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Energy error for different smearing methods
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Force error for different smearing methods
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Force on the outermost atom in a 6 layer Aluminum 111 slab as a function of the broadening using the 
different occupation methods. In order to keep the different methods comparable, the broadening has been 
multiplied by 2.117 for all but the Fermi-Dirac distribution.



DOS

https://arxiv.org/pdf/2103.03469.pdf
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Advices on choosing k-grid and smearing

K-grids
● Use even number of points, a shift can reduce number of k-points 
● Try Gamma-centered k-grid if you have problem with off-center Monkhorst-Pack
● Use fine grid for DOS
● Use equivalent k-points meshes when comparing different cells

Orbital occupation (smearing)
● Systems with a band-gap (semiconductors, insulators, molecules): Use either Fermi-Dirac 

(fictitious temperatures) or Gaussian smearing (robust) with a low broadening, e.g. around 0.05 -  
0.2 eV (Smaller is better, but the SCF convergence can be long ...).

● Metals : Use either Methfessel-Paxton or cold smearing with as large a broadening as possible 
as long as the entropy contribution to the free energy remains small. Ensure that you have 
several empty bands, which is required for convergence

● DOS: tetrahedron smearing with Bl”ochl corrections − accurate interpolation for energies and 
DOS, but may introduce errors in forces (https://arxiv.org/pdf/2103.03469.pdf)

https://blog.virtuallab.co.kr/en/2019/05/24/4-how-to-set-the-k-point-more-properly-shift/


Plane-waves for valence and core electrons
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Guistino E1

● To describe core electrons a lot 

of plane waves are required

○ very computationally 

demanding!

● Solution: Pseudopotential 

● The valence electrons 
distributed mainly between 
Si atoms

● The core electrons 
localized near the cores 
and do not participate in 
bonding



Pseudopotential in DFT codes

● Hard and soft potentials - large and small e-cut
● (POTCAR in VASP)
● PAW - projected augmented wave method, See for VASP PAW 

(different number of valence electrons available, sv, pv )
● Vanderbilt USP
● Check required pseudopotential for your task

○ number of electrons (more for small distances)
○ minimal energy cut-off (if several elements are used, the 

maximal should be chosen)
● Use the same pseudopotential for all calculations
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https://www.vasp.at/wiki/wiki/index.php/POTCAR
https://www.vasp.at/wiki/index.php/PAW_method
https://cms.mpi.univie.ac.at/vasp/vasp/PAW_potentials.html


XC functional

● PBE - the most popular functional for general purpurses; averagely good for 

any properties

○ PBEsol - improves equilibrium properties of densely-packed solids and 

their surfaces

○ RPBE - improves adsorption description

● PBE+U - fix delocalization problems of PBE when higher level methods are 

not available, improves description of strongly correlated systems

● Hybrids PBE0, HSE - for strongly correlated systems

○ may be worse than PBE+U

○ very computationally demanding (by 3 orders in plane-wave codes)

● PBE + dispersion corrections - for layered materials

○ DFT-D2 , DFT-D3, many-body dispersion (MBD) method of Tkatchenko, 

etc 36

https://www.vasp.at/wiki/index.php/DFT-D2
https://www.vasp.at/wiki/index.php/DFT-D3
https://www.vasp.at/wiki/index.php/Many-body_dispersion_energy


Periodic Boundary conditions
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● The net electrostatic charge of the system must be zero 
● Charged defects can considered by adding an homogeneous background charge 

of opposite sign

Periodic boundary conditions (PBC) - 
● when an object passes through one 

side of the unit cell, it reappears on 
the opposite side with the same 
velocity. 

● Ideally suited for periodic systems

Keep in mind!
● Any atomic displacements or 

defects inside the unit cell are 
replicated infinitely, which may lead 
to artificial interactions

https://en.wikipedia.org/wiki/Electrostatic_charge


Supercell approach for non-periodicity
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1. Take Unit cell

2. Create a supercell 
3. Make a displacement of defect

● Remember that large supercell is still affected by PBC conditions
● Check convergence with respect to supercell size



Free boundary conditions
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No translation symmetry!

Cons:
● non physical electronic states
● levels in the gap
● finite size quantum effects

Therefore:
For molecules, clusters, disordered 
solids in classical MD simulations

Rigid shell, still 
unphysical, but better than 
open



Discussion
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● Why do we need smearing of bands?

● What is the physical meaning of energy cut-off?

● What is pseudopotential and why it used?

● The k-grid is 12x12x12 for a cubic unit cell. Write in the chat an 

equivalent k-grid for 3x2x1 supercell.

● Why full CI can not be used to describe periodic systems?



Optimization of atoms in periodic systems

Similar to molecular, see previous lecture

In VASP important parameters:

● IBRION - type of optimisation

○ 0 - molecular dynamics

○ 1 - quasi-Newton

○ 2 - Conjugate gradient

○ 3 - Damped MD

○ etc

● NSW - number of steps

● POTIM - step in MD, fs
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https://cms.mpi.univie.ac.at/wiki/index.php/IBRION
https://cms.mpi.univie.ac.at/wiki/index.php/NSW
https://cms.mpi.univie.ac.at/wiki/index.php/POTIM
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In VASP ISIF :
● 2 - only atoms
● 4 - shape
● 3 - shape and volume

Unit cell optimization

● Pulay stress: increase plane 
wave cutoff or do volume scan

● Use the same plane wave 
cutoff for different volumes

● Use consistent k-grids for 
different volumes

https://cms.mpi.univie.ac.at/wiki/index.php/ISIF
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Geometry, cohesion energies, mechanical properties for elemental crystals are quite accurate 
even for simple DFT (LDA, PBE) from Lejaeghere et al., Crit. Rev. Solid State Mater. Sci. 39 
(2014) 1-24

Accuracy: geometry and elastic
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Accuracy: band gap

For band gap calculations use HSE or GW methods, J. Hafner, J. Phys.: Condens. Matter 22 (2010) 
384205 
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Other things to keep in mind

● Use primitive unit cell instead of symmetric one (e.g. VASP recognizes 
diamond lattice but misinterprets k-points)

● Kohn-Sham orbitals are supposed to give one-electron orbitals and 
elementary excitations:
○ No cations and anions
○ TDDFT does not work, for bandgap use GW or HSE06

● Beyond DFT:
○ GW is good for excitations
○ DFT+U is a ``patch'' for valence $d$- and $f$-electrons
○ CI/CC are conceptually challenging
○ QMC is technically challenging (``sign'' problem)
○ DMFT is computationally demanding
○ Overall, no reliable methods for strongly correlated systems (high-T 

superconductors, actinides)
● Surfaces and interfaces, 1D and 2D materials - use appropriate supercell and 

k-grid along the reduced dimension
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Crystal vs molecule: computational chemistry perspective

● Brute force approach (large supercell or supermolecule) does not always 
work (e.g. metals) and is always inefficient (by orders of magnitude)

● Infinite symmetry due to translations (space group)
● Finite sums to lattice sums (or integrals)
● Essentially infinite system (thermodynamic limit) implies no exact answer 

like ``full CI'' + phase transitions (both classical and quantum)
● Metals (no molecular analogues)
● Nuclei motion breaks translation symmetry



Influence of temperature?

● thermal conductivity

● thermal expansion

● electrical resistivity

● heat capacity

● optical absorption

● superconductivity

● thermopower

● structural phase transitions.
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Vibrations in crystals
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Taylor expansion in harmonic approximation

The eigenvalues of mass-weighted Hessian 
are called normal modes and have frequency 
ω, 3N in total, where N is number of atoms



The dependence on q (phonon wave vector)
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Vibrational spectra of diamond)

But in periodic crystal the normal modes obey the Bloch theorem:

n - mode number

As a result normal modes got dispersion in q space



Thermodynamics
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Once phonon frequencies over Brillouin zone are known , the 
energy E of phonon system is given as

Helmholtz free energy F:

Entropy:

Atsushi Togo and Isao Tanaka, Scr. Mater., 108, 1-5 (2015)



Thermodynamics
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Thermal properties of Aluminium



Influence of vibrational entropy
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Hydrogen solubility in Ti

Poletaev, D. O., et al. Computational 
Materials Science 114 (2016): 199-208.



Phonon Calculation
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● Two methods: 

○ Finite differences - creates a set of cell with small atom displacements. 

■ IBRION = 5,6 in VASP

○ DFPT (Perturbation theory) primitive cell can be used

■ IBRION = 7,8 in VASP

○ VASP calculates frequencies only at Gamma point! 

■ For other points use Supercell

● To plot phonon band structure at other points and calculate 

thermodynamic properties use combination of DFT code and phonopy 
(http://atztogo.github.io/phono3py/vasp.html)

https://cms.mpi.univie.ac.at/wiki/index.php/IBRION
https://cms.mpi.univie.ac.at/wiki/index.php/IBRION
http://atztogo.github.io/phono3py/vasp.html


Stability
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● Check stability of lattice by looking on frequencies

○ There should be no imaginary frequencies

○ Three translation modes

● Check mechanical stability 

○ Eigenvalues of elastic tensor should be positive

 



Calculation of Properties

● Electronic structure

● Lattice constants

● Elastic moduli

● Phonon bands

● Free energy

● Phase diagrams

● Defects
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Methods vs scales
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Classical methods
● The interaction between atoms 

described empirically:
○ pair potentials, force fields, 

(EAM) Embedded Atom 
Method 
■ LAMMPS code

● Atomic dynamics 
● 20x20x20 nm, nanoseconds

○ Radiation cascades
○ Diffusion phenomena
○ Phase transitions
○ Plastic deformation

Quantum methods
● Schrödinger equation for atomic 

interaction
○ DFT (Density Functional 

Theory) and flavours
■ VASP, Abinit, QE, etc.

● Electronic structure
● Almost all properties!!!
● Restricted in system sizes (1000 

atoms) and simulation time (1000 
of steps per day) 



Mechanical properties 
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fig 6.1

● The mechanical properties in brittle and ductile regimes depends on defects of 
crystal structure  - an active research area for computational materials

● However, the elastic regime depends only on ideal crystal structure and can be 
easily described 



Equation of state and elastic properties

58

D.Aksyonov et al, Computational Materials Science 65 
(2012): 434-441



Elastic tensor notations

C25=Cyyxz gives relationship between exz 

deformation component σyy stress component

In Voigt notation:



Influence of pressure 
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A.Oganov, S. Ono, Nature 430.6998 (2004): 445-448

compressional

shear

D’’ layer

from 
Giustino



Temperature-pressure phase diagram
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Giustino fig 8.8



Temperature-chemical phase diagrams
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More complicated:
1) Find all phases in chemical space - for example with USPEX code

2) Study solid solutions - use cluster expansion method (ATAT) and 
Monte-Carlo

3) Study the influence of temperature by making phonon calculations
4) Plot phase diagrams

Longo Phys. Chem. Chem. Phys., 2014, 16, 
11218

J. Phys.: Condens. Matter 29 (2017) 035401

DFT and cluster expansion, ZrN-HfN



Case study Fe–W phase diagram from DFT
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A. Jacob, et al., CALPHAD: Computer Coupling of Phase Diagrams and 
Thermochemistry 50 (2015) 92–104

Liquid

L + BCC W

C14

bccfcc FeW

Fe2W

WFe

● DFT
● phonon 

calculations
● Calphad



Summary

Main definitions

● Bands – single particle solutions

● K-points – integration grid in 1st Brillouin zone 

● Partial occupation of bands (smearing)

● Plane wave basis set – wave function represented on reciprocal space grid 
within cut-off 

● Supercells – approximating aperiodic system with a periodic one 

Principles

● Convergence with respect to basis set, k-points, smearing, supercell
● Compare only results obtained with the same setups
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Discussion
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● What convergence tests should be performed in DFT calculations 
for periodic systems ?

● How to estimate dynamical and mechanical stability of the lattice?

● Which class of materials requires less k-points: metals or 

insulators? Why?



Individual studies:

● Reading

Required: Giustino (9.1-9.2, 9.4-9.5, 6.1-6.4, 7.1-7.4, 8.2-8.4)

Additional: Sholl (Ch.3)

1. F. Giustino, Materials Modelling using Density Functional 
Theory, Oxford, 2014

2. D. Sholl, Density functional theory
A Practical Introduction, New Jersey, Wiley, 2009
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Thank you for your attention!
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Case study: Migration of Na in NaVP2O7
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Drozhzhin, O.A., Tertov, I.V., Alekseeva, A.M., Aksyonov, D.A., Stevenson, K.J., Abakumov, A.M. and Antipov, E.V., //. 
Chemistry of Materials, 2019


