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Hartree-Fock Theory

M The Hartree-Fock approximation

Slater determinant fulfills the Pauli principle
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Hartree-Fock Theory

O Configuration interaction (Cl)
Linear combination of Slater determinants
Correlation effects taken into account
Leads to the energetically preferred solution
Leads generally to the exacte solution

Only for small systems doable
Van Vleck catastrophy




Nobel lecture ... D(r1, 12, )

0 The many-body wavefunction of 1000 electrons
cannot be stored in the whole universe

Van Vleck catastrophy (1936)
W. Kohn, Rev. Mod. Phys. 11, 1253 (1999).

C. Some meta-physical-chemical considerations

The following remarks are related to a very old paper
by one of my teachers, J. H. Van Vleck (1936), in which
he discusses a problem with many-body wave functions,
later referred to as the Van Vleck catastrophy.

[ begin with a provocative statement. In general the
many-electron wave function V(ry, ..., ry) for a system
of N electrons is not a legitimate scientific concept, when
N=N,, where Ny=10°.




A simpler example

™ Ne atom |¢(r1,r2,r3,r4,r5,r6,r7,r8,rg,r10)‘

10 electrons

30 coordinates

10 entries for each coordinate10° entries

1 byte per entry 100 bytes

5 x 10° bytes per DVD 2x102°DVDs

16 GB per smartphone ~102° smartphones

7 x 10° people on earth 1.5 x 10
smartphones / person

0 Storing is not an option (maybe calculating on
demand is)




Density-functional theory

O In principle, we need to know the many-electron
wave function

O({r;}) = P(r1,ro,...ry)

depending on the coordinates of all electrons

O According to Hohenberg and Kohn, only the
electron density is required

n(r)

depending on three coordinates: x, y, z




Questions

M Do we really need the many-body wave function?

M Can we compute the electron distribution
without explicitly knowing the WF?

N

n(r) = <¢’({fi}) > o(r—r) ¢({ri})>

n(r) = Nf(b*(r,rz, e, TN P (1,15, ., 7))y L dPTy




Density-functional theory
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Hohenberg-Kohn theorem
P. Hohenberg, W. Kohn, Phys. Rev. 136 , B864 (1964)

O I: The total energy of an interacting system of
electrons is a unique functional of the density

The functional F does not depend on the external
potential!

O II: The energy takes its minimum at the ground-
state density




Proof of HK theorem

3 I: Uniqueness: We need to show that there is
only one potential that leads to a certain density




Proof of HK theorem

3 I: Uniqueness: We need to show that there is
only one potential that leads to a certain density

Given H®, Vex, E = (®({ri}) |[H®[®({ri})), n(r)

Assume there is another potential such that we have

~

He Vee E = <“({r,-}) e cb({r,-})> A(r) = n(r)
(&|Fe| &) < (0|He|0) = (®]H — Ve + Vewe| )

E<E+ <1> A Vext o)

—) E+E<E+E

E LE+ ‘b Vet ext impossible!
Two potentnals cannot Iead to the same density
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Proof of HK theorem

E -] E‘I" <¢ Vext_ Vext
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impossible!




Proof of HK theorem

M There is a one-to-one correspondence between
density and potential




Proof of HK theorem

M Part Il: The ground state energy can be obtained
variationally: The density that minimizes the total
energy is the ground-state density




Proof of HK theorem

M Part Il: The ground state energy can be obtained
variationally: The density that minimizes the total
energy is the ground-state density

n(r) = Vo » H® = F 4+ Vppy » ©({r;}) = (®|F|®) = F[n()]
The total energy is a functional of the density:
En(r)] = Fn@)] + | Vere@n(r)dr

A density that is a ground state of some external potential
is called V-representable

E[n'(r)] = F[n'(n)] + f Verxe N (r)dr = (®'|F| ') + (| V| D)
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Proof of HK theorem

M Part Il: The ground state energy can be obtained
variationally: The density that minimizes the total
energy is the ground-state density

E[n'(] = F[n' ("] + f Vert (N (r)dr = (&'|F| ") + (| Ve | @)

For a ground state density:

E[n(™)] = F[n(r)] + f Vere(Mn (r)dr = (®|F|®) + (®|V,ye | D)

From variational principle:

~~

(@|F|®") + (@' |Vexe | ') > (@[F| @) + (@[ Vere []0)

E[n'(r)] > E[n(r)]




Kohn-Sham theory

@ The HK theorem is exact for the ground state

O It is beautiful as we only need to know one =
THE functional to describe any system

Atoms, molecules, solids, surfaces, nano-structures

0 The only problem is that we don't know this
functional

Thus DFT is not practical so far

O Kohn and Sham set the stage for the practicality
of DFT

W. Kohn, L. Sham, Phys. Rev. A 140,1133 (1965)




Kohn-Sham theory

0 One can divide the energy functional into three
contributions:

Elatel] = 7la{e}] / / MO0") dede’ + Ee[n(e)]

r— r’I

0 We still don't have a good expression for the
kinetic energy

This problem is, however, diminished by introducing
single-particle functions which give the exact density:

N
- Z ui(r))?




Kohn-Sham theory

M We will now carry out the variation with respect
to the density through a variation with respect to
the single-particle functions.




Kohn-Sham equations

——v2+ Vext (r /dr

XC
ext \/XC

Ir—

1
r—r|

approximation needed - onl ‘ ‘
. y approximation!
contains xc effects and corrections to kinetic energy

{—%v%— Vext(r)+ / dr'n(r')




Kohn-Sham theory

0 Caution: The Kohn-Sham eigenvalues were
derived as Lagrange parameters of the variation
procedure and cannot a priori be interpreted as
single-particle energies.

0 The Kohn-Sham orbitals are auxiliary quantities

which produce the exact density.

0 The only approximation required for the ground
state Is V,..

@ The potential is a functional of the density which
IS obtained from the KS orbitals; these, in turn,
give the density. Thus the KS equation must be
solved self-consistently.
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Self-consistent field cycle

Starting density
e.g.. from atoms

Poisson Classical Coulomb
— VH( r) interaction

equation

o approximation
within DFT
mixed density
for " iteration J N VXC(r) ! Coulomb poieniiol]

converged? of nuclear charges

g =
ground-state

density found Kohn—Shomlequotion

. summahon over
n(r) Kl N | I | I
occupned states




Energy contributions

M Example: Si 600 -
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Exchange-correlation functionals

M Local-density approximation (LDA)
xc effects taken from homogenous electron gas

ELDA /dr (r)eumf[n( )]

Exchange is known analytically:

e i

Correlation: high- and low-density limits are known
analytically:

€. =AIn(rs)+ B +1,(Cln(ry) + D) - high density




Exchange-correlation functionals

M Local-density approximation (LDA)
xc effects taken from homogenous electron gas

ELDA /dl‘ ( ) umf[n( )]

Exchange is known analytically:

()= -3 or\3 1 .3 7
NI = o \ 3 E > | 4mn(r)

Correlation: high- and low-density limits are known
analytically:
- low-density (electrons
0438 1.33 147 form a BCC lattice called
3/2 Wigner crystal) -




Exchange-correlation functionals

O Local-density approximation (LDA)

Neither the high nor the low-density limits are useful for
ordinary matter

For the intermediate densities, one can parametrize an
exact numerical solution (e.g., obtained with quantum
Monte Carlo)

e.g., Hedin & Lundquist, 1971

X 2

ec[n(r)] = 0.045 [(1 +x3) In (1 + 1) I 1‘




Exchange -corvelation functionals

7 Many features of the exact Ey-[n] are known =
constraints on the approximate functional

Limiting behavior for n(r) -» 0 and n(r) = 0

Lieb-Oxford bound:
1 1 f ne(rng (')

2 e =
Tij 2 lr—1r'|

4
drdr' > 1.68 [ ne (r)3dr

1
q"jziij

T LDA satisfies these constraints




Exchange-correlation functionals

7 Many features of the exact Ey-[n] are known =2
constraints on the approximate functional
Express Eyq[nr] through exchange-correlation hole

(change due to XC of probability to find an electron at r
when another electron is at r’, can be measured!):




Exchange-correlation functionals

7 Many features of the exact Ex.[n]| are known =2
constraints on the approximate functional
Express Eyc[n] through exchange-correlation hole

(change due to XC of probability to find an electron at r
when another electron is at r'):

hXC (r, r+u )
|ul

1
Exc[n] =5 J drn(r)/ du
Sum rules:
[duhy(rnr+u)=-1, [duh:(r,r+u)=0

Local conditions:
hy(r,r+u) <0Vr,u, hy(r,r) = —@ (no spin)

™ LDA satisfies all these constraints!




Exchange-correlation functionals

M What about spin?




Exchange-correlation functionals

7 Local spin density approximation (LSDA)

The total energy is a unique functional of the density, but
the wave function is not - any normalized linear
combination of wave functions with the same energy
gives the same density

If H does not depend on spin, there are 25 + 1 wave
functions with the same energy and the same total spin S

Constrain number of spin-up and spin-down electrons

separately >E[ng.ng] = (@|A|@),_,, ..

Generalizations of the HK theorem to E[n,, ng| exist

31




Example: Cu

VOLUME 81, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NOVEMBER 1998

Absolute Band Mapping by Combined Angle-Dependent Very-Low-Energy Electron
Diffraction and Photoemission: Application to Cu

V.N. Strocov,"** R. Claessen,' G. Nicolay,' S. Hiifner,! A. Kimura,®> A. Harasawa,® S. Shin,* A. Kakizaki,*
P.O. Nilsson,” H.I. Starnberg,” and P. Blaha®
Fachrichtung Experimentalphysik, Universitit des Saarlandes, D-66041 Saarbriicken, Germany
2 Department of Physics, Chalmers University of Technology and Géteborg University, SE-41296 Géteborg, Sweden
3 Institute for Solid State Physics, University of Tokvo, Roppongi, Minato-ku, Tokyo 106-8666, Japan
*Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
Institut fiir Technische Elektrochemie, Technische Universitit Wien, A-1060 Wien, Austria
(Received 18 August 1998)

We present an experimental method to determine the electronic E(k) band structure in crystalline
solids absolutely, i.e., with complete control of the three-dimensional wave vector k. Angle-dependent
very-low-energy electron diffraction is first applied to determine the unoccupied states whose k is
located on a high-symmetry line parallel to the surface. Photoemission via these states, employing the
constant-final-state mode, is then utilized to map the valence bands along this line. We demonstrate
the method by application to Cu, and find significant deviation from free-electron-like behavior in the
unoccupied states, and from density-functional theory in the occupied states.  [S0031-9007(98)07792-8]




Example: Cu

PHYSICAL REVIEW B. VOLUME 63, 205108

Three-dimensional band mapping by angle-dependent very-low-energy electron diffraction
and photoemission: Methodology and application to Cu

V. N. Strocov* and R. Claessen
Experimentalphysik II, Universitat Augsburg, D-86135 Augsburg, Germany

G. Nicolay and S. Hufner
Fachrichtung Experimentalphysik, Universitat des Saarlandes, D-66041 Saarbricken, Germany

A. Kimura, A. Harasawa, and S. Shin
Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106-8666, Japan

A. Kakizaki
Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Iharaki 305-0801, Japan

H. 1. Starnberg and P. O. Nilsson

Department of Physics, Chalmers University of Technology and Goteborg University, SE-41296 Goteborg, Sweden

P. Blaha
Institut fur Physikalische und Theoretische Chemie, Technische Universitat Wien, A-1060) Wien, Austria
(Received 17 November 2000; revised manuscript received 2 February 2001; published 27 April 2001)




Example: Cu

manybody effects
_taken into account

(LDA similar) ; !
\\

X K r

V. N. Strocov, et al., V. N. Strocoy, et al.,
Phys. Rev. B 63, 205108 (2001). Surface Rev. and Lett. 9, 1281 (2002).




Exchange-corvelation functionals

@ How well (or badly) does LDA work?
z 0 §

X
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Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)
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P. Haas, F. Tran, and P. Blaha,
Phys. Rev. B 79, 085104 (2009)
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Exchange-correlation functionals

7 How well (or badly) does LDA work?

For total energies, Ey is underestimated by about 10%,
E. is overestimated by about 200%, so Ex. is good to
about 7% (mysterious cancellation of errors).

For bond dissociation energies, LDA overbinds by about
1 eV/bond (30 kcal/mol), so no good for thermochemistry.

Typical bond lengths are underestimated by 1% (unless
involving an H atom), so excellent geometries and
vibrations. So still used for structure.




Exchange-correlation functionals

M How well (or badly) does LDA work?

LDA
- ~
« GW

GDFT
o Exact-exchange
A GKS

HSE
v GWA

GaP

O OO OAIP
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w
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Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)




Example: Fe

O It took until 1996 that the proper crystallographic
phase of Fe could be correctly obtained by DFT

3 foo

PBE

>
nd
E
>
=X
@
c
LL

O.,

N calculations

by P. Blaha

o» | PBE

‘. L

o

———

710 80 90 60 '/'O 80 90
Volume [bohr3]

J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
More than 137000 citations




Exchange-correlation functionals

7 Generalized gradient approximation (GGA)
Take into account local variations of the density:

ESE4 = [ dr n(r)(e$4[n, |Vnl|] + €5¢4n, |Vn|])

Gradient expansion approximation: expand Ey. for slowly
varying electron gas in terms of Vn -- slow convergence




Exchange-correlation functionals

7 Generalized gradient approximation (GGA)
Take into account local variations of the density:

ESE4 = [ dr n(r)(e$4[n, |Vnl|] + €5¢4n, |Vn|])

Gradient expansion approximation: expand Ey. for slowly
varying electron gas in terms of Vn -- slow convergence

el = ellES[n]Fy[n,Vn]  (enhancement factor)

K 3 |IVn(r)|
1+ us?/x’ > 2kn(r)

CCA  LDA B? 20 s% + As?
EC = EC —ll‘l 1 +
20 B 1+ As? + A?s*

PBE: Fx=1+4+kKk-




Exchange-corvelation functionals

M Generalized gradient approximation (GGA)
Take into account local variations of the density:

ESE4 = [ dr n(r)(e$4[n, |Vnl|] + €5¢4n, |Vn|])

PBE: {4 = efES[n]Fx[n,Vn] (enhancement factor)

K _|Vn(r)|
1+ us?/k’ > 2kn(r)

2 2a  s%+ As*?
GGA _ _~LDA B | 1
e €c +2af n( +ﬁ 1+A52+A254)
M The parameters are chosen to satisfy the
constraints (PBE: exchange hole sum rule and

local, and Lieb-Oxford bound)

FX=1+K—
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P. Haas, F. Tran, and P. Blaha,
Phys. Rev. B 79, 085104 (2009)
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Exchange-corvelation functionals

M Performance of GGAs
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Philipsen and Baerends, Phys. Rev. B, 54, p. 5326 (1996)



Exchange-corvelation functionals

16 ® PBE
A scQPGW no electron-hole

A scQPGW electron-hole

.

°® ¥
c BNMgO

APe ® 2™
sic® GaN

Cds band gaps

-2

~
>
L
—
2
Q
L
=
-

| | |
4 8 16
Experiment (eV)

M. Shishkin, M. Marsman, Phys. Rev. Lett. 95, 246403 (2007)




Exchange-correlation functionals
0 Meta-GGAs

ESEA = [ dr n(r)el$4(n, Vn, 1)

with kinetic energy density t(r) = Z?CC”"% VY, (1) ]|?

Although  is a non-local functional of n, it is available in
standard calculations

For a 1-electron system, t is known exactly (Weizsacker):
|Vn|?
~ 8n
Gradient expansion motivates use of t
Functional is constructed similar to GGAs




Exchange-correlation functionals

A Meta-GGAs

ESEA = [ dr n(r)ells4(n, Vn, 1)

Histogram of Iattlce constatnt errors for a set of
semiconductors (units: 0.01 A)

TPSS PBE

-20 -15-10 -5 0 5 10 15 20 -20-15-10 -5 O 5 10 15 20

Lucero, Henderson, and Scuseria, J. Phys.: Cond. Matter 24, 145504 (2012) 47



Exchange-correlation functionals

7 Fractional occupations

min Elnl = (1= )Ew + wE
4 n,f n(rydr=M+w [n] = ( ) I"i M+1

i N LN
M—1MM+1 M—1MM+1

The exact energy changes piece-wise linear with N

Perdew et al., Phys. Rev. Lett. 49, 1691 (1982);




Exchange-correlation functionals

@ Dependence of approximate DFT on the
occupation

Exact
typical LDA/IGGA ——

N
Number of electrons




Exchange-correlation functionals

M Connection between the self-interaction error (SIE)
and the artificial delocalization

_ Dependence E(N) for
[ 1,2, 3, and o
_ _ separated molecules

1 electron on 1 unit 1/2 electron on 2 units

N 2N

ELDA/GGA(N) is convex
because £79M0(§)
increases with &,
mainly due to SIE

1/3 electron on 3 units 1/ electron on < units
1 1

3N 3N+1 =N coN+1
Mori-Sanchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)




Exchange-corvelation functionals

O Generalized Kohn-Sham (GKS): E = E[{y}]

0.40 ' . .
LDAM=1 —— . .
0.35 } chain Hy LbAM=2 —— 1 Hartree-Fock is a functional

0.30 " repea’ted M 1[82 mzi —— 1 within GKS

Digost times
0.20 +

e | | More “DFT-like”: Optimized
g:)g | effective potentials (local
0:00 _ convex ] potentials that approximate
Pl 1 the non-local HF exchange)
010 | - numerically complex and

0.15 . . 1 | computationally expensive
-1 -0.5 0 ; 1

)
Hartree-Fock “overcorrects” the problem (correlation part
IS missing)
Mori-Sanchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2068)
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Exchange-correlation functionals

M Hartree-Fock is self-interaction free, but...
22

AHartree-Fock (PAW)  (iE

20

P T R O ¢
D 00 O N & O O

=
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©
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0

Bande interdite experimentale (eV)

Brice Arnaud, Universit'e de Rennes, France™




Exchange-correlation functionals

@ Hybrid functionals

0.40 , . . Ildea: combine HF with
LDA M=1 ——

0.35 t - 20 g _
chain H;g LBAM=2 GGA to reduce the self

0.30 —s— ] interaction error:
0.25 +

0.20 | . ! : E[n] = aE)?F +(1 - a)E)c(;GA +

015 | : 1 EM 0<a<
0.10 f 1

0.05 + nvex . 1
0.00 | conve . ..~ | a#1because a non-local

005 | | expression for correlation

-0.10 . functional would otherwise be

i 2. 0 '. . needed, but we don’t know it,
8 therefore - a balance

How to choose a?

Mori-Sanchez, Cohen, Yang, Phys. Rev. Lett. 100, 146401 (2008)




Exchange-correlation functionals

7 Hybrid functionals E = «Ef'* + (1 — a) E)IEDA/GGA +

ELDA/GGA

(5
The mixing parameter a depends on the choice of
(semi)local exchange/correlation

EPBEO — 025 EHF ((1%S}) 4+ 0.75EEBE + EEPE (choice of a is
based on perturbation theory (MP4))

Perdew, Ernzerhof, and Burke, J. Chem. Phys. 105, 9982 (1996)

There can be other parameters

EHSE = 0.25E8"F (w) + 0.75EF PR (w) + EFPEMR (w) + EEPE
erfc(wr) 1 — erfc(wr)

?1_ = SR, (r) + LR, (1) =

T
J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2005§)




Exchange-corvelation functionals

M Hybrid functionals
EPPEO = 025" ({"°)) + 0.75Ex"" + E¢”*

A I L} l LS L] L I v I' A

2 1 From: “Advanced Calculations for

Defects in Materials: Electronic
Structure Methods”, Alkauskas,

{1 Deak, Neugebauer, Pasquarello,
T'O P *. | Van de Walle (eds.), Willey-VCH
3no (2011)
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Exchange-correlation functionals

M Hybrid functionals

“An ideal hybrid would be sophisticated enough to
optimize n for each system and property..."

Perdew, Ernzerhof, and BurkeJ. Chem. Phys. 105, 9982 (1996)

How can we do this?




Example: Fey, defect in MgO

M Is a = 0.25 always good?

EHSE = 0.25E7™F (w) + 0.75Ex""*F (w) + By (w) + EEPE

1 erfc(wr 1 — erfc(wr
;zSRw(r)+LRw(r) = ( )+ (wr)

r r




Example: Fey, defect in MgO

M Is a = 0.25 always good?
EHSE = 0.25Ey " (w) + 0.75Ey " "R (w) + Ex " (w) + EEBE
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Electron addition energy E ;4 =
E(N + 1) — E(N) for the Fey,, defect

Optimal a = 0.6

There IS an « for which £f9M0 — const




Example: O vacancy in MgO

T Determine the best a
EHSE = 0.25Ey R (w) + 0.75E5 " R (w) + Ey "% (w) + EEPE
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Example: O vacancy in MgO

T Determine the best a
EHSE = 0.25Ey R (w) + 0.75E5 " R (w) + Ey "% (w) + EEPE
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HSE formation energies for varying a:
| strong dependence for F* and F2*!
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Example: O vacancy in MgO

T Determine the best a

EHSE = 0.25Ey R (w) + 0.75E5 " R (w) + Ey "% (w) + EEPE
Request:

( Ionization energies with opt-HSE and with GoWo@opt-HSE should agree )

calculated using an MgsO9 embedded cluster

From total energy
differences
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Example: O vacancy in MgO

T Determine the best a

EHSE = 0.25Ey R (w) + 0.75E5 " R (w) + Ey "% (w) + EEPE
Request:

( Ionization energies with opt-HSE and with GoWo@opt-HSE should agree )

calculated using an MgeO9 embedded cluster

From highest
occupied orbital

From total energy
differences
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Example: O vacancy in MgO

T Determine the best a

EHSE = 0.25Ey R (w) + 0.75E5 " R (w) + Ey "% (w) + EEPE
Request:

( Ionization energies with opt-HSE and with GoWo@opt-HSE should agree )

calculated using an MgsO9 embedded cluster

From highest
occupied orbital

From total energy
differences
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Exchange-correlation functionals

M Gradient-corrected density functionals

FCGA _ / db Fln(i), VAo
M Meta- GGA's

Frmeta—GGA _ /.dr el Pl e

M Orbital-dependent functionals
E.g., exact exchange
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Exchange-correlation functionals

M Jacob's ladder
John Perdew

from Kieron Burke




The End



