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• Basics of quantum mechanics 

– Schrödinger equation 

– Models 

• Basics of quantum chemistry 

– Born-Oppenheimer approximation 

– Electronic structure problem: overview 

– Basis sets 
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We are going to quantum world! 
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Classical system of particles 
described by Newtonian equation 
of motion  

It’s the mechanics of waves, instead of classical 
particles.  Description of the wave: amplitude 
(with phase) at every moment. 

Newtonian equation for quantum objects 
is time-dependent Schrödinger’s equation 

November-December, 2021 

Numerically ‘easy’ 
Numerically ‘hard’ 



When do we need quantum mechanics? 
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Materials (atoms, molecules, nanostructures, solids) = electrons + nuclei, me<<MN 

Electrons do require quantum description in 
most cases: stationary state, evolution, charge 
density distribution, electric and magnetic 
properties, spectroscopic/optical properties 
(interaction with light) etc. 
 
Nuclei do NOT require quantum description in 
most cases (classical framework is sufficient). 
However, quantum mechanics becomes 
important for specific phenomena such as 
vibrational (generally vibronic) spectroscopy, 
tunneling, non-adiabatic electron-vibrational 
dynamics etc. 
 
Light: Usually, for interaction of materials with 
light (electromagnetic field), Maxwell's 
classical theory (Maxwell equations) suffices. 
Simple particle model (photon) is necessary for 
spectroscopic modeling. 

Partial charges on the water 

Evolution of the light-induced electronic 
density during excited state dynamics 
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Historical motivations for quantum mechanics 
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2) The photoelectric effect: Heinrich Hertz (1887) discovered that 
ultraviolet light can cause electrons to be ejected from a metal 
surface AND the kinetic energy of the ejected electrons depends on 
the frequency (not on intensity) of the light. Einstein (1905) 
assumed quantized nature of radiation itself                                         
Einstein  (1907) proved quantized atomic vibrations. 

1) The ultraviolet catastrophe: the blackbody 
radiation described by the Rayleigh-Jeans law                         
           diverges for short wavelength.  

Max Planck in 1900 assumed quantized 
energies of electronic oscillations giving rise to 
the  emission of radiation 
which explained the blackbody radiation. 

3) Double slit experiments: De Broglie (1924) argued 
that matter also can exhibit this wave-particle duality. 
Experimental confirmation: Davisson and Germer 
(1927) observed electronic  diffraction patterns by 
bombarding metals with electrons. 
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The Schrödinger Equation 
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1925: The first (and independent) formulation 
of quantum theory by Erwin Schrödinger 
(partial differential equations) and 
Werner Heisenberg (matrix formulation)  

Time-independent Schrödinger equation for a particle/wave with mass m in potential V 

or 

Time-dependent Schrödinger equation for a single particle/wave 

The Schrödinger equation provides a way to calculate the possible wave functions of a system 
and how they dynamically change in time. However, the Schrödinger equation does not directly 
say what, exactly, the wave function is. But: it is consistent with energy conservation, linear and 
consistent with De Broglie relations! 
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Operators and Quantum Mechanics 
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An operator is a rule that transforms a given function into another function (common 
definition, e.g., by Levine) 

Also the expectation value of any operator A:  

The Hamiltonian operator 

The sum and product of two operators:  

A complete set of states and identity operator  

Function of the operator: Taylor series + the n-th power of an operator, e.g. 
allow to define any function of the operator, for example,  the exponential 

The associative law is valid for operators: 

The commutative law : In general: 
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Some basic properties of the operators 
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Linear operators Eigenstate (eigenfunction+eigenvalue) of the operator 

If 

1) Eigenvalues are real; 
2) Eigenvectors  can be chosen to be orthogonal; 
3) Corresponds to a symmetric matrix 

Unitary operator (useful for transformation 
from one representation to another) 

Hermitian operator 

Commutators : 

If                            then 
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Heisenberg uncertainty principle 
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Quantum Mechanics and linear vector spaces 
Most operators in quantum mechanics are linear operators -> allows 
representation of quantum mechanical operators as matrices and wavefunctions 
as vectors in some linear vector space. Great for numerical calculations! 

Or vector notation for Dirac’s “ket-” and “bra-” 

Assuming orthonormal                                and complete basis set, any 

The scalar product: 

And finally an operator 
is defined by a matrix: 

So that                         is represented as 

For Hermitian operator 
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Foundational principles of QM 
(following C. D. Sherrill, GaTech) 
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1)  The wavefunction                 completely specifies the state of a quantum mechanical 
system that depends on the coordinates of the particle(s) and on time. 

2) Wavefunction (= probabilistic interpretation) 
with normalization 

3) To every observable in classical mechanics there is a corresponding linear and 
Hermitian operator in quantum mechanics 

4) Experimental measurements are associated with 
eigenvalues a, satisfying the eigenvalue equation. 

Even for superposition of states 

5) An average value of the observable: 

6) The wavefunction obeys the time-dependent Schrödinger equation: 

7) In the case of fermions, the wavefunction has to be antisymmetric with respect to the 
interchange of all coordinates of two particles 

November-December, 2021 



The Schrödinger cat 
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Experimental measurements are associated 
with eigenvalues a, satisfying the eigenvalue 
equation. Even for superposition of states 
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Schrödinger's cat is a thought experiment, 
a hypothetical cat that may be 
simultaneously both alive and dead, a 
state known as a quantum superposition 



The variational method 
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If ground state is (E0 and Y0)  than 

where         are the eigenfunctions  of   

Normalization 

Expectation 
value 

The variational principle 

In a search for the best wavefunction to 
define the ground state of a system, the 
quality of the guess wave functions can 
be evaluated by their associated 
energies: the lower is the better! 

We do not know an exact wavefunction, but what can we say about any trial wavefunction? 

Proof 
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Illustration 1: The Particle in a Box 
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A particle constrained to move in a single dimension, 
under the in influence of a potential V (x) which is zero 
for 0 < x <a and infinite elsewhere. 

The Schrödinger equation 

Solution 

Boundary conditions:               is zero at x=0 and a  

Note existence of the quantum number and oscillating 
nature of the wavefunctions (standing waves), where 
the number of nodes is related to the quantum number  
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Case study 1: Excitons on the molecule 
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Particle (exciton) is in a box 

C. Wu, S. Malinin, S. Tretiak, and V. Chernyak, Nature Phys., 2, 631 (2006) 

Binding energy (Coulomb e-h interaction) 

Enhanced e-h 
interactions can 
be due to small 
dielectric 
constant and low-
dimensionality 



Illustration 2: The Harmonic Oscillator 
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Wikipedia: Some trajectories of a harmonic oscillator (i.e. a ball attached to a 
spring) in classical mechanics (A-B) and quantum mechanics (C-H). In 
quantum mechanics, the position of the ball is represented by a wave 
(wavefunction), with the real part shown in blue and the imaginary part 
shown in red. Some of the trajectories (such as C,D,E,and F) are standing 
waves (or "stationary states"). Each standing-wave frequency is proportional 
to a possible energy level of the oscillator. (G-H) are non-stationary states (G) 
is a randomly-generated superposition of the four states (C-F). H is a 
"coherent state" which somewhat resembles the classical state B. 

A particle subject to a restoring force (e.g. Hooke's Law) 

                        i.e., a potential                                           Applies 
to a single particle or 2 particles with reduced mass m 

The Schrödinger equation 

Solution 

the Hermite 
polynomial 
of degree n 

Energy levels: 

This model is foundational for 
ALL vibronic spectroscopy!!!! 
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Case study 2: The Harmonic Oscillator 
solved on quantum computer (D-wave) 
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The quantum annealer eigensolver (QAE) 

is developed and applied to compute the 

vibrational spectrum of a molecule on 

LANL’s D-Wave machine “Ising”. The D-

Wave computed ground and first excited 

state vibrational wave functions of O2 are 

plotted in red. The attractive interaction 

potential between the two oxygen atoms 

(red spheres) is plotted in black. The 

vibrational state is labeled by the quantum 

number ν where ν=0 is the ground state 

and ν=1 is the first excited state. 

A. Teplukhin, B. K. Kendrick, and D. Babikov, J. Chem. Theory Comput. 15 4555 (2019) 

D-Wave 2X computer, with 1000 qubits. ‘Advantage’ QAE architecture is coming 



Illustration 3: The Hydrogen Atom 
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A proton fixed at the origin is orbited 
by an electron of reduced mass m 

Solutions: Radial part via the Laguerre functions and 
angular part via the spherical harmonics 

Wikipedia: Probability densities 
for the electron at different 
quantum numbers (ℓ, n, m = 0) 

The Coulomb potential and the kinetic energy: 

The Schrödinger equation in spherical polar coordinates 

The radial and angular parts are separable 

Energy levels: 

Quantum numbers: 

November-December, 2021 



Illustration 3: The Hydrogen Atom 
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Illustration 3: The Hydrogen Atom 
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(from Jensen) 

Three quantum numbers, n, l and m correspond to the three spatial variables r, q 
and j. The n quantum number describes the size of the orbital, the l quantum 
number describes the shape of the orbital, while the m quantum number describes 
the orientation of the orbital. 
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• Free particle 

• Particle in a box 

• Harmonic oscillator 

• Hydrogen atom 

• Kronig-Penney model 

• Tight-binding models 
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Quantum mechanics models 
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Discussion 
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1. By examining wavefunctions for solution of particle in a box problem, 
harmonic oscillator or hydrogen atom, what are the common features? 
Why? 

 

2. Solving Schrödinger equation scale exponentially with the number of 
particles. Why? 

 

3. Why does mapping linear operators of quantum mechanics into linear 
algebra advantageous for numerical solutions?  
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Simple approach: The Hückel approximation 
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An example of tight-binding Hamiltonian, 
first constructed by Erich Huckel in 1930-
1931 for aromatic  hydrocarbons 

1) Only π –orbitals (one per carbon, the 
blue color) are considered 

2) The orbitals are orthogonal Sij = dij 

3) Diagonal resonance term Hii=a is 
derived from the ionization potential of 
methyl radical. 

4) Off-diagonal nearest neighbor 
resonance terms are also derived from 
experimental data: Ep=a and Ep =a+2b 

5) Not nearest-neighbor resonance 
interactions are neglected! 

Provides simplified but conceptually very attractive Hamiltonian model! 
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Hückel approach to hydrocarbons 
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The allyl system, following Cramer 

The secular equation: 

Figure 4.2 from Cramer: Huckel MOs 
for the allyl system 

Eigenvalues correspond to bonding, 
non-bonding and anti-bonding 
molecular orbitals: 

The bonding (lowest energy) MO 

2 electrons per orbital starting from the bottom! 

p –bonding energy of the system: 
allyl cation (2e) 
allyl radical (3e) 
allyl anion (4e) 



Case study 3: Extended Hückel Theory 
with Machine Learning 
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ML-scheme for learning Hückel Hamiltonians 
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T. Zubatuk, B. Nebgen, Ni. Lubbers, J. S. Smith, R. Zubatuk, G. Zhou, C. Koh, K. Barros, O. 
Isayev, and S. Tretiak, “Machine Learned Hückel Theory: Interfacing Physics and Deep Neural 
Networks” J. Chem. Phys., 154, 244108 (2021). 



Is learned tight-binding model physical? 
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T. Zubatiuk, B. Nebgen, N. Lubbers, J. S. Smith, R. 
Zubatiuk,  G. Zhou, C. Coh, K. Barros, O. Isayev,  S. 
Tretiak, (2019) https://arxiv.org/abs/1909.12963 



Reactions: butadiene and aza-butadiene  
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Quantum chemistry: molecular Hamiltonian 
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Exact nonrelativistic Hamiltonian 
in absence of external fields 

(i.e. quantum system of particles 
interacting with Coulomb potential) 

A

B

x

y

z

rij

rj

ri

i

j

RAB

RA

RB

riA

Atomic units (au) sets to be unity: 
Electron mass  
Elementary charge  
Reduced Planck's constant  
Coulomb's constant  

OR 

What is neglected? Relativistic mass 
corrections (mostly inner electrons in 
heavy atoms), spin-orbit couplings  (L*S) 
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The Born-Oppenheimer Approximation 
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Given separable Hamiltonian                                                 for 

Then  (factorization)  and                                    (additive) 

Electronic problem: 

Nuclei problem: 

i.e., the nuclei move in a potential created by the electrons. 

Approximately separable! 
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What are we neglecting in BO approximation? 
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Following Jensen:  We have extra terms in the nuclei Hamiltonian 
due to other electronic levels and center of mass motion 

Small parameter 

3) Mass-polarization (cannot separate the 
center of mass motion from the internal 
motion of particles) 

1) First order non-adiabatic terms:  VERY IMPORTANT!!! 
(make Born-Oppenheimer approximation  invalid in the 
vicinity of any electronic level crossing) 

i and j run over the electronic  levels 

2) The diagonal correction (small compared to Ei, 
accounted in adiabatic approximation, neglected in BO 
approximation ) 

1 2 

3 
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Method Explicit e-correlations Wave-function Cost (PC) 

Ab initio 
(MP2, CI, CAS-CI, CC-EOM) 

All 
(depends on level of theory) 

Exact 
(for given basis set) 

Large 
(≥10 electrons) 

Density Functional  
(DFT, TDDFT) 

Dynamic only Kohn-Sham  
(a single-det. “fit” to e-density) 

Significant  
(≤1000 atoms) 

Semiempirical 
(AM1, PM7, ZINDO) 

Coulomb, exchange, static Hartree-Fock 
(variationally optim. single-det.) 

Low  
(≤10 000 atoms) 

Tight-binding 
(Huckel, Frenkel, DFTB) 

No One-electron 
(total e-energy is inaccurate) 

Approach MM 
(>10 000 atoms) 

The electronic structure problem: overview 
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 A system of fermions interacting via Coulomb potential in electrostatic field of 
nuclei 

 Problem 1 – one-electron problem: use finite basis set (atomic-like orbitals 
STO/GTO or plane waves) 

 Problem 2 – many-body problem: use mean field (HF, DFT, TDDFT) and 
perturbation theories (MP2, CI, CC) in Fock space (basis of Slater determinants) 
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Wavefunction approach: a systematic way 
to seek an exact answer 
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Figure 4.3 (from Jensen) 
Convergence to the exact solution 

The wavefunction for our ‘exact’ 
Hamiltonian should be more complex 
than a single Slater determinant 

A better wavefunction will give lower 
ground state energy respecting variational 
principle: 

Example: correlations energies for noble 
gas atoms (in Hartrees) 

Correlation energy: 
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The LCAO concept:  construct a guess wave 
function f  as a linear combination of 
known atomic wave functions j 

Variational principle leads 
to a secular equation 

Figure 4.1 from Cramer: Two 
basis sets for representing a 
C–H σ bonding orbital 

For a minimum                    i.e.,  

Resonant 
and overlap 
integrals 

N roots: eigenvalues (E) and eigenvectors (ai) defining molecular orbitals (MO) 

Solving one-electron problem: 
Atomic orbitals and the LCAO approach 
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What is our basis set? 
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Figure 4.1 (from Cramer) Two different 
basis sets for representing a C–H σ 
bonding orbital with the size of the basis 
functions roughly illustrating their 
weight in the hybrid MO. 

Basis set = the ‘room’ for electrons to occupy! 
 
This is a fundamental approximation in ALL 
electronic structure calculations!  
 
The foundation of every electronic structure code 
= only one ‘type’ of the basis set is used in the 
program 

The choice of the basis set type is just a 
balance between numerical efficiency and 
physical nature of the electronic 
wavefunctions to be described! 

Common examples: Slater (exponential), 
Gaussian,  polynomial, plane waves, 
wavelets,  cube functions, …. 
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Example 1: Slater-type orbitals (STO)  

Computational Chemistry and Materials Modeling 36 

Atom-centered polar coordinates: ζ is a 
Slater exponent (Slater rules, 1930) that 
depend on the atomic number, n is the 
principal quantum number for the valence 
orbital, and the spherical harmonic 
functions Ym

l (θ, φ), depending on the 
angular momentum quantum numbers l 
and m, (from solution of the Schrödinger 
equation for the hydrogen atom) 

Advantages: chemically intuitive, physically 
transparent, ‘tails’ of the wavefunctions are 
important 
Disadvantages: numerically difficult (2e integrals 
need to be evaluated numerically) 
Where used: small molecules semiempirical 
approaches (few 2e integrals),  density functional 
theory (kernels without exact exchange) 
Package: ADF (Amsterdam Density Functional) 

Example: H2 molecule (from Szabo) 

(1s orbital for H) 

(overlap) 

(bonding and antibonding 
MOs, the HF solutions for H2) 
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Example 2: Gaussian-type orbitals (GTO) 
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Idea: Fit Slater-type atomic orbitals with a 
superposition of Gaussian orbitals 

Advantages: chemically intuitive, physically 
transparent for finite size molecules, numerically 
easy (2e integrals are evaluated  analytically)  
Disadvantages: ‘tails’ of the wavefunctions are 
‘too short’, no ‘cusp’ of the wavefunction near 
nuclei, issues with over-completeness and 
orthogonalization in extended sets 
Where used: majority of electronic structure 
modeling  (both wavefunction and DFT methods) 
in the finite size molecules  
Package: Gaussian, Turbomole, Q-Chem, 
GAMESS, Firefly, etc. 

Generally 3 GTO fit well 1 STO: 

Evaluation of integrals is analytic: 
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GTO extravaganza 
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- Contracted basis set: GTO basis function is a FIXED superposition of primitive GFs 
- Minimum basis set: the smallest BS able only to host electrons on an atom 
- Double zeta (DZ) basis set: doubling of all basis functions (tighter and diffuse exp) 
- Split valence basis set: doubling of all basis functions  only on valence orbitals 
- Triple Zeta (TZ), triple split valence, Quadruple Zeta (QZ), Pentuple Zeta (PZ)…. 
- Adding polarization (e.g. TZP) and diffuse functions  

Table 5.1 (from Jensen): The Pople-style basis sets 

Table 5.2 (from Jensen): The Ahlrichs type basis sets 
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Just 6-31+G* 
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Lots of choices! 
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Example 3: Plane waves 
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Idea: Use cos/sin forms of wavefunction 
following solution (waves) of the free-
electron motion problem: Advantages: Orthogonal basis set, numerically 

‘easy’ integrals, friendly to the k-space and 
Periodic Boundary Conditions (PBC), no Pulay 
forces for fixed cell 
Disadvantages: Necessity of PBC, the basis set 
size/computational complexity grows 
significantly with the size of the periodic cell, 
necessity of using pseudopotentials. 
Where used: majority of electronic structure 
modeling  (mostly DFT methods) in periodic 
systems 
Package: VASP, NWChem, ABINIT, etc. 

Plane wave expansion 

PBC constrain 

Constrains on the wavevectors: 

Volume of the cell 

Reciprocals vectors 

Energy cut-off 
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Pseudopotentials: 
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Problem: near nuclei, electronic 
wavefunctions/densities have highly 
oscillating behavior. Core electrons 
do not participate in chemical bonds. 

The pseudopotential replaces the complicated effects of the 
motion of the core (i.e. non-valence) electrons of an atom and 
its nucleus with an effective potential, which implicitly take 
into account relativistic effects for core electrons. Coulombic 
potential -> effective potential term in the Schrödinger 
equation for the rest of electrons. By construction of this 
pseudopotential, the valence wavefunction generated is also 
guaranteed to be orthogonal to all the core states. 

From Wikipedia: Comparison of a 
wavefunction in the Coulomb potential 
of the nucleus (blue) to the one in the 
pseudopotential (red). The real and the 
pseudo wavefunction and potentials 
match above a certain cutoff radius  rc    

The pseudopotentials are particularly necessary for plane 
wave calculations but also useful for Gaussian basis sets for 
heavy atoms (e.g. LANL2DZ ~ 6-31G for valence electrons) 
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Individual studies: 
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• Reading. 
 Required: Cramer (Ch. 4) 
Additional: Jensen (Ch. 1.8.1, 3.1-3.4) 
Szabo (Ch. 2.1, 2.2) 
 
Solution in detail for Hydrogen atom 
http://web.mst.edu/~sparlin/phys107/lecture/chap06.pdf 
http://www.nat.vu.nl/~wimu/EDUC/MNW-lect-2.pdf   
 
Advanced reading:  
A fresh look to Born-Oppenheimer approximation from Hardy Gross 
– new definition of potential energy surfaces 
[1] A. Abedi, N. T. Maitra and E. K. U. Gross, Phys. Rev. Lett., 105, 123002, (2010). 
[2] A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys., 137, 22A530, (2012). 
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