HOPE-PV 2020 School

Comparison of non-fullerene acceptors: How geometry influences electronic transport

Andriy Zhugayevych

Skolkovo Institute of Science and Technology (Skoltech)

Acknowledgments

Collaborations

Sergei Tretiak (theory, LANL) Martin Seifrid (experiment, U Toronto)

S Halaby, M Martynowycz, Z Zhu; S Tretiak, AZ, T Gonen, M Seifrid, Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures, submitted to Chem Mater

Pavel Troshin (Skoltech) Keith Stevenson (Skoltech/RSF) Anna Koehler (U Bayreuth/Volkswagen)

Motivation

A historical view on progress in organic photovoltaics:

- 6% utilizing known materials such as P3HT/PCBM
- 12% major advance in design of electron donor material
- 18% major advance in design of electron acceptor material Now a lot of non-fullerene acceptors (**NFA**) are known:

With A-D-A intramolecular structure, NFAs showed a new type of intermolecular electronic connectivity, illustrating that our understanding of possible intermolecular packings is limited

Outline

- Geometry of intermolecular packings: trade off between connectivity and processability
- Methodology: arguing reliability of first principle modeling
- Comparison of NFAs from charge transport perspective

Lattice geometry:

Trade off between connectivity and processability

For good charge transport we should have maximum electronic connectivity (3D for bulk materials, 2D for 2D materials)

- Bandwidth is proportional to coordination number
- Robustness of transport with respect to disorder

However, best solution processable organic semiconductors usually have poor electronic connectivity (e.g. amorphous polymers)

- Contain electron-insulating solubilizing groups
- Polycrystalline organic materials usually have poor morphology
- No efficient synthesis of all-organic frameworks

Basic crystalline motifs in organic semiconductors (with mobility $\gtrsim 1 \mbox{ cm}^2/\mbox{V}{\cdot}\mbox{s})$

- "Hydrogen-poor" small molecules
 (often 3D connectivity but limited molecular design)
- Herringbone packing (2D connectivity but small couplings, pentacene)
- π-stacking (large couplings but 1D, many A-D-A donors)

 All-organic frameworks (large couplings and 2D/3D connectivity but no efficient synthesis and processing)

C60 has superior 3D electronic connectivity

Competititive NFA must be as good electron transporter as PCBM

- FCC lattice with coordination number 12
- High density of states at LUMO (triply degenerate)
- But electronics couplings are moderate: \sim 30 meV
- Functionalized fullerenes might be different

Complex crystalline motifs in organic semiconductors (with mobility $\gtrsim 1 \ \text{cm}^2/\text{V}{\cdot}\text{s})$

- Slipped π-stack
 (1D but with long electron transfer, T1)
- π-stacking + herringbone motifs (anisotropic 2D, rubrene)
- Brickwork (2D with large couplings, TIPS-pentacene)
- Wire mesh to be discussed here (3D connectivity, many NFAs)

Map of known organic semiconductors

Mostly 1D or 2D conductivity Known 3D networks are "hydrogen-poor" small molecules like TCNQ except for relatively large C60

How large are electronic couplings?

(For charge transport we need good geometrical connectivity and large couplings) Intramolecular are $\sim 1~\text{eV}$ synthetic Metals 259, 116231 (2020); Solar Energy 198, 605 (2020) Intermolecular are usually < 100~meV:

J Phys Chem Lett 7, 3973 (2016)

Outline

- Geometry of intermolecular packings: trade off between connectivity and processability
- Methodology: arguing reliability of first principle modeling
- Comparison of NFAs from charge transport perspective

Accuracy of intramolecular geometry: BLA and dihedrals Stilbene and PPV: J Phys Chem Lett 10, 3232 (2019)

Accuracy of intermolecular geometry: packing topology P3HT: J Phys Chem C 122, 9141 (2018)

Accuracy of crystal geometry for calculation of mobility

Hopping amplitudes* for 50 crystals including all high- μ [Chem Soc Rev 47, 422 (2018)]

 $\mu = 0.95 \frac{D(t^2)}{W(T)^2} \frac{\text{cm}^2}{\text{V} \cdot \text{s}}$, square root of eigenvalues of $D(t^2)$ are hopping amplitudes

Outline

- Geometry of intermolecular packings: trade off between connectivity and processability
- Methodology: arguing reliability of first principle modeling
- Comparison of NFAs from charge transport perspective

How do we compare

• Experimental geometry is usually not very accurate for electronic structure calculations

 \implies DFT-D optimized geometry (PBE-D3/PAW400)

- Electronic couplings are calculated in dimer approximation with two states per molecule (CAM-B3LYP/6-31G*)
- Errors in calculation of charge carrier mobility might be large
 ⇒ we compare descriptors of charge transport:
 - Electronic bandwidth (end-to-end and mean square root)
 - Hopping amplitudes (coupling multiplied by hopping distance):

 $\mu = 0.95 \frac{D(t^2)}{W(T)^2} \frac{\text{cm}^2}{\text{V} \cdot \text{s}}$, square root of eigenvalues of $D(t^2)$ are hopping amplitudes

A-D-A molecules and their π -stacking Example of Y6

Wire mesh intermolecular packings

A-D-A molecules interconnected via π -stacking of A-units

- The topology of interconnections has complex 3D pattern
- Breaking some contacts breaks 3D connectivity
- Breaking L-R symmetry breaks 3D connectivity (see above)

Comparison: NFAs and some reference systems

system		η_1	η_2	η_3	geometry
1D systems					
R24	h	0.33	0.06	0.03	$\pi ext{-stack}$
T1	h	1.23	0.01	0.00	slipped stack
EH-IDTBR	е	1.32	0.22	0.03	slipped stack
ITIC-Th	е	0.94	0.08	0.00	slipped stack
ITIC-1CI	е	0.74	0.07	0.00	broken mesh
2D systems					
hexacene	h	0.75	0.65	0.04	herringbone
TIPS-pentacene	е	1.39	0.53	0.00	brickwork
3D systems					
C60	е	${\sim}0.4$	${\sim}0.4$	~ 0.4	fcc
F2-TCNQ	е	0.94	0.39	0.38	3D
o-IDTBR	е	1.04	0.35	0.19	wire mesh
Y6	е	0.99	0.92	0.39	wire mesh
3D models (100 meV couplings)					
o-IDTBR model		0.99	0.39	0.33	wire mesh

 $\eta_{1,2,3}$ are hopping amplitudes in eV·Å

Why Y6 is exceptional

- All intermolecular couplings are large (in contrast to o-IDTBR)
- Large-area overlap due to corner-like molecular shape

Summary

- Fine tuning of intermolecular contacts in novel NFAs allows for creation of materials with robust 3D electronic connectivity
- Example of structural variations within the wire mesh packing topology suggests to look for other solution processable architectures with more robust 3D connectivity
- See more details in article Chem Mater 33, 966 (2021)