See examples in LGFhc.mw
, LGFcp.mw
, LGFbcc.mw
See mathematical details here
To cite this code use: A Zhugayevych, Efficient evaluation of lattice Green's functions, JPA 58, 025209 (2025)
d
spatial dimensiont
times
Laplace transform variableq
series expansion variableX::[x1,x2,...]
spatial coordinatesr=||X||=Norm(X,2)
Euclidean distancex=|X|=Norm(X,1)
shortest-path distancelat{name}{function}(args)
where name
is lattice name (Dsc,1,2sq,3sc,2tri)
and function(args)
is one of:
Basic functions
X(X)::X
symmetry-unique siteO(X,sorted)::Xs
site orbit, sorted
means that X
is already symmetry-uniqueONT(X,sorted)::[Osize,Otype::posint]
orbit size and type (Wyckoff position)CD(X,sorted)::nonnegint=|X|
ED2(X)::numeric=||X||^2
add(f::procedure(x1,...,xd),L)
lattice summation of a full-symmetry functionp(t,X)
propagatorGreen's function
g(s,X)
Green's function evaluated by best available methodh?(q,X)=g?(s,X)
replace "g" by "h" to change argumentgo(s)
Green's function at origingos(s)
derivative of the Green's function at originr(sigma)
density of statesgF
by Fourier integralgL(s,X,{fulloutput})
by large-scale approximation,
full output includes g,eta,kappa,Xsorted
gP
Green's function evaluated by path expansiongR
by recurrencePath expansion
gP(q,X,/N:=-1,output:=`if`(type(q,numeric),"","v"),digits:={8})
Green's function by path expansion up to order N
or maximum available,
where output
is one of
v
=value without remainder,
c
=corrected by remainder value,
r
=[c,remainder], otherwise corrected value with checksPR(q,X,N,shift:=0)
series remainder,
negative shift
gives the upper bound,
note that remainder to P(N)
is PR(N+1)
N(n,X,{sorted,all})
path expansion numbers of order n≥0
,
sorted
relates to X
,
all
requests all numbers for given X
Nc(n,X,{sorted,all})
path expansion coefficientsN_init(d,L,N,{maxsize1,maxsize2,printout})
initialize path expansion numbers and coefficients,
d<1
reset some or all tables and arrays (see examples)Recurrent evaluation
hR(q,X,output:=`if`(type(q,numeric),"v","l"))
Green's function by recurrence, where output
is one of
v
=value, l
=list of coefficients at basis functionsB(d,q)::[h0,h1,..,hd]
natural basis for recurrenceM(X,{sorted})
recurrence polynomial coefficientslat{1}g(s,x)
lat{1,2sq,3sc,2tri}go
lat{1,2sq,3sc}gos
lat{1,2sq,3sc,2tri}r(sigma)
lat{2sq,3sc,2tri}B(q)
lat{Dsc}gL
lat{Dsc,2tri}gP
lat{Dsc,2tri}gR
Recurrent evaluation
d≤3
basis is available in terms of elliptic integrals,
otherwise latDschP(q,X,_rest)
is usedSeries at zero
latDscSZ(d,p)
singular functionlatDscScB(d)
coefficient at singular partlatDscSAJ2A(d,AJ,Am::list(Array),B::Array,extra:=0,{p0:=1})::list[d-1]
coefficients at regular part from Ref.[Joyce03]latDscSC(d,mv:=-1)
get (mv::integer
) or set (mv::list
) coefficients at ODE basis,
if mv<0
then all coefficients are returned,
if mv=[]
then default values are usedlatDscSAB(a0,b0,N,dN:=1,IC:=[0=0],{printout})
series coefficients of regular A::Array(0..d,0..N)
and singular B
parts,
a0,b0
can be either IC for recurrence or existing A,B
to extendlatDscS(d,m,n,k,dN:=20,all)
series coefficients BA[m,n,k]
, where
m=0..d
is for ODE basis,
n=0..d
is for recurrence basis, and
k=0..N
is at p^(2k)
latDschpS(p,X,N:=0,sorted,basis)
function hp(p,X)=h(q,X)*q^(|X|-1)
where p^2+q^2=1
,
if basis
then basis functions are returned
hp=add(C[m]*hb[m],m=1..d)+C[d]*hb[0]*Z+hb[1]-correction
Integral representations
latDscgI(s,X)
Green's function as integral (Laplace transform) for Re(s)>0
latDscgI_alt(s,X)
Green's function as integral for Im(s)>0
Functions accepting special symbolic arguments for symbolic output
lat3scgos(s,/xi,K,E)
lat2sqB(q,/K,E)
lat3scB(q,/xi,K,L,/K1,K2)
(the last two optional arguments are detected by _nrest
)Other dimension-specific functions
lat3scgo0
value at 0lat3sc_q2xi(q),lat3sc_xi2q(xi)
conversion between q
and Joyce's xi
variablelat3sc_xi2k(xi)
argument of the complete elliptic integrals used for evaluation of the Green's functionlat3scho_H0,1
two equivalent representations via Heun functionTriangular lattice
lat2trip(t,X,n)
here n
is number of terms in convolutionlat2tri_q2xi(q),lat2tri_xi2q(xi)
conversion between q
and Joyce's xi
variablelat2tri_xi2k(xi)
argument of the complete elliptic integrals used for evaluation of the Green's function