See examples in Generic.mw
For mathematical details see Random walk on a lattice: Basic formulas
To cite this code use: A Zhugayevych et al, JPCC 117, 4920 (2013) [pdf]
k
k-vectord::posint
spatial dimensiono::1..d
enumerates dimensionsM::Matrix(d)
matrix of Cartesian translation vectors as columns (default is identity matrix)n::posint
number of sites in unit cellm::1..n
enumerates sites in unit cellmt=[m,t1,...,td]
enumerates sites in translationally invariant system, here t
denotes integer translationsmtsid
indexing table mts[mtsid[mt]]=mt
n2::posint
size of the extended cell consisting of all sites coupled to unit cell starting from n
sites belonging to the unit cellsites::Array(n2,0..d)
such that sites[i,0]=mts[i][1]
and sites[i,o]=mts[i][1+o]
replicas::Vector(n)
whose i
-th entry is list of all replicas of i
-th site including i
Points/points::Matrix(d,n)
whose columns are Cartesian/lattice coordinatesW::Matrix(n,n2)
transition rate matrix (its diagonal elements will be set to zero if appropriate)Wk::Matrix(n)
Fourier transform of W
W0,Wp,Wpp
are Wk
, its derivative diff(Wk(k),I*k)
, and second derivative all at k=0
and with zero diagonalU::Vector
decay rates vectorH::Matrix(n,n2)
single-cell real-space HamiltonianHk::Matrix(n)
Fourier-transform of H
Builders
BuildW(n,genfun,genopt,{sym::boolean})::W
build transition rates matrix (symmetric if sym
),
genfun
determines generating function which uses genopt,_rest
and can be one of
"Matrix"
use Matrix
"RandomMatrix"
use RandomMatrix
"Generate"
use RandomTools[Generate]
"Sample"
use Statistics[Sample]
"GamEps"
use Gam[i,j](Sample(genopt[1]))*exp(Eps[i](Sample(genopt[2])))
(returns W,Gam,Eps
)BuildA(W,/U,$)::Matrix(n)
build generator of Markov chain such that P(t)=exp(A*t)
BuildH(tbH,k::{name,indexable},{symmetric,printout},$)::H,Hk,mts,mtsid
build translationally invariant Hamiltonian matrix,
here tbH::table
of translationally unique Hamiltonian elements tbH[m0,m,t1,...,td]
Solvers
GreensF(s,W,/U,$)::Matrix
compute Green's function G=(s-BuildA(W,U))^(-1)
(datatype is derived from s,W
)StatSol(W,/i0,simplifyf,{printout},$)
find stationary solution,
with respect to site i0::nonnegint:=0
(must be significant site to avoid the loss of precision),
if zero i0
is set to a site with the maximum outflowZeroExpan(W,/i0,simplifyf,{printout},$)
expand the resolvent at zeroVelocity(sites,W,/M,replicas,i0,simplifyf,{printout},$)
velocity for infinite periodic latticeDiffusionTensor(sites,W,/M,replicas,i0,simplifyf,{printout},$)
diffusion tensorDiffusionLength(sites,W,U,points,/M,replicas,{printout},$)
mean square displacementAnalyzers
PathExpansion(H,E,oi,of,vmin,Nmax,/subsys,{Lmax,neglect,printout,digits,nprint},$)
::table([seq(L=list([v,o1,o2,...,oL]),L=0..Lmax2)])
perform path expansion of sub-Hamiltonian in perturbation theory over nondiagonal matrix elements
by expanding Hrenorm[oi,of]=H[oi,of]+H[oi,env].(E-Henv)^(-1).H[env,of]
in powers of transfer integrals
E::numeric
perturbation eigenenergyoi,of::posint
indices of a matrix element to be expandedsubsys::list(posint):=[oi,of]
list of indices of the subsystem, other indices are considered as environment env
vmin::numeric
expansion threshold in value of tau-matrix elementsneglect::numeric:=1e-3
threshold for perturbation terms vmin2=neglect*vmin
Nmax::posint
maximum value of terms to keep at each iterationLmax::posint:=99
maximum order of expansionLmax2
internal variable defining maximum nonzero term of expansionnprint::posint:=9
number of largest terms to print