J Leeman, Y Liu, J Stiles, S Lee, P Bhatt, L Schoop, R Palgrave, Challenges in High-Throughput Inorganic Materials Prediction and Autonomous Synthesis, PRX Energy 3, 011002 (2024) – doi
M Krenn, R Pollice, S Guo, M Aldeghi, A Cervera-Lierta, P Friederich, G dos Passos Gomes, F Hase, A Jinich, A Nigam, Z Yao, A Aspuru-Guzik, On scientific understanding with artificial intelligence, NRP 4, 761 (2022)
H Hayashi, A Seko, I Tanaka, Recommender system for discovery of inorganic compounds, NCM 8, 217 (2022)
A Mroz, V Posligua, A Tarzia, E Wolpert, K Jelfs, Into the Unknown: How Computation Can Help Explore Uncharted Material Space, JACS 144, 18730 (2022)
W Wang, J Li, W Liu, Z Liu, Integrated computational materials engineering for advanced materials: A brief review, CMS 158, 42 (2019)
C Zeni, R Pinsler, D Zugner, A Fowler, M Horton, X Fu, Z Wang, A Shysheya, J Crabbe, S Ueda, R Sordillo, L Sun, J Smith, B Nguyen, H Schulz, S Lewis, C Huang, Z Lu, Y Zhou, H Yang, H Hao, J Li, C Yang, W Li, R Tomioka, T Xie, A generative model for inorganic materials design, Nature 639, 624 (2025) – doi, MatterGen
N Szymanski, B Rendy, Y Fei, R Kumar, T He, D Milsted, M McDermott, M Gallant, E Cubuk, A Merchant, H Kim, A Jain, C Bartel, K Persson, Y Zeng, G Ceder, An autonomous laboratory for the accelerated synthesis of novel materials, Nature 624, 86 (2023) – doi, A-Lab
A Merchant, S Batzner, S Schoenholz, M Aykol, G Cheon, E Cubuk, Scaling deep learning for materials discovery, Nature 624, 80 (2023) – doi, GNoME